0000000000065129

AUTHOR

T. Otto

High-accuracy mass determination of unstable cesium and barium isotopes

Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\delta \mbox{m} \approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

research product

Quadrupole excitation of stored ion motion at the true cyclotron frequency

Abstract The motion of an ion in a Penning trap has been investigated in the presence of an azimuthal quadrupole radio frequency field and a damping force provided by buffer gas collisions. Analytical expressions are derived which describe the line shape of the cyclotron resonance as well as the properties of the mass-selective cooling mechanism for heavy ions. Excellent agreement is observed between theoretical results and experimental data obtained with the tandem Penning trap mass spectromer ISOLTRAP at ISOLDE (CERN).

research product

Ramsey technique applied in a Penning trap mass spectrometer

Abstract The Ramsey method has been applied in an experiment aiming for accurate mass determination of unstable isotopes. The ion motion in a Penning trap has been excited with time-separated oscillatory fields and Ramsey fringes were observed in the case of dipole and quadrupole excitation. The experimental resonances are in good agreement with theory. Further applications of the technique are discussed.

research product

Penning-trap mass measurements of neutron-deficient Rb and Sr isotopes

Abstract The Penning-trap mass spectrometer ISOLTRAP installed at the on-line mass separator ISOLDE 2 at CERN has been used for mass determination of 75–87 Rb and 78–83,87 Sr. Ions are captured in a Penning trap and their cyclotron frequency ω c = ( q m )B in the trapping field B is measured. Ratios of these frequencies lead to the determination of the atomic mass of these isotopes. A resolving power of typically m Δm = 10 6 and an accuracy of δm ≈10 keV is obtained. The mass of 78 Sr is measured for the first time and, in most cases, the mass values of the other isotopes are significantly improved. The experimental masses are compared with theoretical predictions.

research product

High-Accuracy Mass Determination of Unstable Rb, Sr, Cs, Ba, Fr and Ra Isotopes with a Penning Trap Mass Spectrometer

The majority of masses of radioactive isotopes has been measured by determination of Q-values in nuclear reactions or in nuclear decay. For a long time the use of direct mass determination has been limited to stable isotopes or isotopes close to stability. This changed in the 70’s with magnetic spectrometers put on-line to isotope separators. The Orsay group (Audi et al., 1986) succeeded in measuring the masses in long isotope chains of alkali elements. They impressively demonstrated the possibilities embedded in direct mass determination of isotopes far from stability. The persisting demand for more precise masses of short-lived isotopes (or exotic particles) has prompted during recent yea…

research product

Mass Determination of Francium and Radium Isotopes by a Penning Trap Mass Spectrometer

Abstract A tandem Penning trap mass spectrometer is used for mass measurement of radioactive isotopes produced at the on-line isotope separator ISOLDE/CERN. The mass is determined directly and with high accuracy by measuring the cyclotron frequency of the stored ions. Measurements were performed on 209 210 211 212 221 222Fr and 226 230Ra. A resolving power of 5 × 105 was used and an accuracy of 1·8 × 10−7 has been achieved.

research product

Accurate mass determination of short-lived isotopes by a tandem Penning-trap mass spectrometer

A mass spectrometer consisting of two Penning traps has been set up for short-lived isotopes at the on-line mass separator ISOLDE at CERN. The ion beam is collected and cooled in the first trap. After delivery to the second trap, high-accuracy direct mass measurements are made by determining the cyclotron frequency of the stored ions. Measurements have been performed for $^{118}--^{137}$Cs. A resolving power of over ${10}^{6}$ and an accuracy of 1.4\ifmmode\times\else\texttimes\fi{}${10}^{\mathrm{\ensuremath{-}}7}$ have been achieved, corresponding to about 20 keV.

research product

Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer.

Ground and isomeric states of a nucleus have been resolved for the first time by mass spectrometry. Measurements on $^{78}\mathrm{Rb}^{\mathit{m},}$g and $^{84}\mathrm{Rb}^{\mathit{m},}$g were performed using a tandem Penning trap mass spectrometer on-line with the isotope separator ISOLDE/CERN. The effects of ion-ion interaction were investigated for two ion species differing in mass and stored simultaneously in the trap.

research product