0000000000065151
AUTHOR
Vincenzo Oliveri
A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels
Abstract A Rayleigh-Ritz solution approach for generally restrained multilayered variable angle tow stiffened plates in postbuckling regime is presented. The plate model is based on the first order shear deformation theory and accounts for geometrical nonlinearity through the von Karman’s assumptions. Stiffened plates are modelled as assembly of plate-like elements and penalty techniques are used to join the elements in the assembled structure and to apply the kinematical boundary conditions. General symmetric and unsymmetric stacking sequences are considered and Legendre orthogonal polynomials are employed to build the trial functions. A computer code was developed to implement the propose…
Post-buckling analysis of cracked multilayered composite plates by pb-2 Rayleigh–Ritz method
Abstract A pb-2 Rayleigh–Ritz variational approach for the analysis of post-buckling behavior of cracked composite plates is presented. The plate is modeled by the first order shear deformation theory taking geometric nonlinearities into account through the von Karman’s theory. General stacking sequences are considered. Cracks are modeled by using subdomain decomposition of the plate coupled with penalty techniques, used to augment the variational statement with the needed continuity conditions along the connected subdomains edges. Numerical procedures have been developed and used to validate the present solution by comparison with available literature results. Original results are then pre…
Thermo-mechanical post-buckling analysis of variable angle tow composite plate assemblies
peer-reviewed The increasing use of composite materials for lightweight structural applications and the extended tailoring capabilities offered by variable stiffness laminates requires rapid and robust analysis tools that adequately describe the mechanical behaviour of such structures. In this work, a Rayleigh–Ritz solution for generally restrained multilayered stiffened variable angle tow plates in the post-buckling regime is presented. The plate model is based on first-order shear deformation theory and accounts for geometrical nonlinearity through von Kármán’s assumptions. General symmetric and unsymmetric stacking sequences are considered and Legendre orthogonal polynomials are employed…
Post-Buckling Analysis of Damaged Multilayered Composite Stiffened Plates by Rayleigh-Ritz Method
A Rayleigh-Ritz approach for the analysis of buckling and post-buckling behavior of cracked composite stiffened plates is presented. The structure is modeled as the assembly of plate elements modeled by the first order shear deformation theory and taking geometric nonlinearities into account through the von Karman’s theory assumptions. Continuity along the plate elements connected edges and the enforcement of rigid and elastic restraints of the plate boundaries are obtained by using penalty techniques, which also allow to straightforwardly implement efficient crack modeling strategies. General symmetric and unsymmetric stacking sequences are considered and numerical procedures have been dev…
Buckling and post-buckling analysis of cracked stiffened panels via an X-Ritz method
Abstract A multi-domain eXtended Ritz formulation, called X-Ritz, for the analysis of buckling and post-buckling of stiffened panels with cracks is presented. The theoretical framework is based on the First-order Shear Deformation Theory and accounts for von Karman's geometric nonlinearities. The structure is modeled as assembly of plate elements. Penalty techniques are used to fulfill the continuity condition along the edges of contiguous elements and to satisfy essential boundary conditions requirements. The use of an extended set of approximating functions allows to model through-the-thickness cracks and to capture the crack opening and tip singular fields as well as the structural behav…
Ritz Solution for Transient Analysis of Variable-Stiffness Shell Structures
The dynamic response of thin-walled structures is driven by mass and stiffness distribution. As such, variable-stiffness (VS) composites offer opportunities to tune structural dynamic responses. To this extent, efficient analysis tools become increasingly important for structural analysis and design purposes. In this work, an efficient and versatile Ritz method for free vibrations and linear transient analysis of VS doubly curved shell structures is presented. VS shell structures are modeled as an assembly of shell-like domains. The shell kinematics is based on the first-order shear deformation theory, and no further assumption is made on the shallowness or on the thinness of the structure.…
A non-linear Ritz method for progressive failure analysis of variable angle tow composite laminates
A Ritz formulation for non-linear analysis of damage initiation and evolution in variable angle tow composite plates under progressive loading is presented. The model is built on a few key items. It assumes first order shear deformation theory kinematics and non-liner strains in the von Karman sense. The constitutive relationships are formulated in the framework of continuum damage mechanics at the ply level, so that each laminate layer can experience in-plane damage initiation and evolution, then reflected in material softening and loss of local stiffness. A Ritz polynomial expansion of the primary variables and the minimization of the total potential energy provide the discrete solution e…
Buckling and Postbuckling of Stiffened Composite Panels with Cracks and Delaminations by Ritz Approach
A Ritz approach for the analysis of buckling and post-buckling of stiffened composite panels with through-the-thickness cracks and/or delaminations is presented. The structure is modeled as the assembly of plate elements whose behavior is described by the First-order Shear Deformation Theory and von Karman’s geometric nonlinearities. Penalty techniques ensure continuity along the edges of contiguous plate elements and the enforcement of the restraints on the external boundaries. They are also used to avoid interpenetration problems. General symmetric and unsymmetric stacking sequences are considered. A computer code has been developed and used to validate the proposed method, comparing the …
Ritz Model for Damage Analysis in Variable Angle Tow Composite Plates
In this work, a Ritz method is developed for progressive damage analysis of multilayered variable angle tow (VAT) composite plates under geometrically non-linear strains. The proposed model adopts a first order shear deformation theory and considers geometric non-linearities through the von Karman assumptions. A meso-modelling approach based on Continuum Damage Mechanics is adopted for analysing the initiation and evolution of damage. The onset of damage is predicted using the Hashin’s criteria. Four damage indices are defined and computed for expressing the degradation of the mechanical properties of the material, both for fibers and matrix under either tension and compression loading. A s…
Investigation of buckling characteristics of cracked variable stiffness composite plates by an eXtended Ritz approach
Abstract Variable Angle Tow (VAT) composite plates are characterized by in-plane variable stiffness properties, which opens to new concepts of stiffness tailoring and optimization to achieve higher structural performance for advanced lightweight structures where damage tolerance consideration are often mandatory. In this paper, a single-domain eXtended Ritz formulation is proposed to study the buckling behaviour of variable stiffness laminated cracked plates. The plate behaviour is described by the first order shear deformation theory whose generalized displacements, namely reference plane translations and rotations, are expressed via suitable admissible trial functions. These consist of a …