Active tectonics along the south east offshore margin of Mt. Etna: New insights from high-resolution seismic profiles
The offshore margin of Mt. Etna has been shaped by Middle Pleistocene to Holocene shortening and extension and, more recently, by gravity-related sliding of the volcanic edifice. These processes have acted contemporaneously although the gravitational component largely prevails over the tectonic one. In order to investigate this issue, we focused on the main role of active tectonics along the south-eastern offshore of Mt. Etna by means of marine high-resolution seismic data. Seismic profiles revealed post-220 ka sedimentary deposits unconformably overlaying the Lower-Middle Pleistocene Etnean clayey substratum and volcanics of the Basal Tholeiitic phase and the Timpe phase. Offshore Aci Trez…
An integrated geodetic and InSAR technique for the monitoring and detection of active faulting in southwestern Sicily
We present the results of the analysis of GNSS (Global Navigation Satellite System) and InSAR (Interferometric synthetic-aperture radar) data collected in the frame of a project financed by the “Struttura Terremoti” of INGV (Istituto Nazionale di Geofisica e Vulcanologia). Combined investigations pointed out for potential seismogenic sources for destructive earthquakes recorded in southwestern Sicily, including the 1968 Belice earthquake sequence and that supposed to have destroyed the Greek city of Selinunte which, according to geoarcheological data experienced two earthquakes in historical times. Our approach is aimed to evaluate the current deformation rate in SW Sicily and to improve th…
Structural architecture and active deformation pattern in the northern sector of the Aeolian-Tindari-Letojanni fault system (SE Tyrrhenian Sea-NE Sicily) from integrated analysis of field, marine geophysical, seismological and geodetic data
Framed in the current geodynamics of the central Mediterranean, the Aeolian-Tindari-Letojanni fault system is part of a wider NW-SE oriented right-lateral wrench zone which accommodates diverging motion between regional-scale blocks located at the southern edge of the Calabrian Arc. In order to investigate the structural architecture and the active deformation pattern of the northern sector of this tectonic feature, structural observations on-land, high and very-high resolution seismic reflection data, swath bathymetry data and seismological and geodetic data were merged from the Lipari-Vulcano volcanic complex (central sector of the Aeolian Islands) to the Peloritani Mountains across the G…
HIGH-RESOLUTION SEISMIC SURVEY IN THE WESTERN CALABRIA AND EASTERN SICILY OFFSHORE: IMPLICATIONS WITH VERTICAL TECTONICS
High-resolution seismic data acquired along the continental shelf/upper slope offshore of Capo Vaticano (western Calabria), Milazzo Promontory and Mt. Etna (eastern Sicily) allow to provide new insights on vertical mobility related to active tectonics. A number of depositional sequences bounded by unconformities or correlative para-conformities were recognized on Sparker profiles in the first 200-300 m below the sea-floor. The most recent sequence overlays a widespread erosional surface that ostensibly formed during the sea level stillstand of the Last Glacial Maximum (LGM), whereas a stack of depositional sequences, which are interpreted as representing the falling and low-stand systems tr…
Recent Activity and Kinematics of the Bounding Faults of the Catanzaro Trough (Central Calabria, Italy): New Morphotectonic, Geodetic and Seismological Data
A multidisciplinary work integrating structural, geodetic and seismological data was performed in the Catanzaro Trough (central Calabria, Italy) to define the seismotectonic setting of this area. The Catanzaro Trough is a structural depression transversal to the Calabrian Arc, lying in-between two longitudinal grabens: the Crati Basin to the north and the Mesima Basin to the south. The investigated area experienced some of the strongest historical earthquakes of Italy, whose seismogenic sources are still not well defined. We investigated and mapped the major WSW–ENE to WNW–ESE trending normal-oblique Lamezia-Catanzaro Fault System, bounding to the north the Catanzaro Trough. Morphotectonic …
Evidence of the Zanclean megaflood in the eastern Mediterranean Basin
A. Micallef et. al.
Use of CORS Time Series for Geodynamics Applications in Western Sicily (Italy)
In the last few decades, the use of GNSS Continuously Operating Reference Station (CORS) networks allowed improving the accuracy of real-time positioning and post-processing positioning. In this way, several applications have been performed including remote sensing, agriculture, cultural heritage and geodynamics studies. The latter have been developed analysing CORS time-series and consistent data over long periods were needed to validate the results. In Italy, specifically in Sicily, two CORS networks were be used to monitor the geodynamics motions: the Istituto Nazionale di Geofisica e Vulcanologia (INGV) GNSS CORS network in the eastern part and the University of Palermo (UNIPA) GNSS COR…
Geodetic and geological evidence of active tectonics in south-western Sicily (Italy)
Abstract Integrated geological, geodetic and marine geophysical data provide evidence of active deformation in south-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968 Belice earthquake sequence. Even though the sequence represents the strongest seismic event recorded in Western Sicily in historical times, focal solutions provided by different authors are inconclusive on possible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic source is still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW–NE alignment between Campobello di Mazara and Castelvetrano (CCA), locate…
Active faulting and continental slope instability in the Gulf of Patti (Tyrrhenian side of NE Sicily, Italy): a field, marine and seismological joint analysis
The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called ‘‘Aeolian–Tindari–Letojanni’’ (ATLFS) which has been interpreted a…
Multi-temporal tectonic evolution of Capo Granitola and Sciacca foreland transcurrent faults (Sicily channel)
Highlights • Seismic reflection profiles evidence tectonic inversion and active strike-slip faults offshore SW Sicily foreland • Pliocene-Quaternary transpressional inversion of Late Miocene extensional basins • Transpressional fold growth rates were high in Latest Miocene-Pliocene and decreased during Quaternary Joint analysis of high-penetration multi-channel and high-resolution single-channel seismic reflection profiles, calibrated by deep well boreholes, allowed a detailed reconstruction of the Late Miocene to Recent tectonic history of the Capo Granitola and Sciacca fault systems offshore southwestern Sicily. These two fault arrays are part of a regional system of transcurrent faults t…