0000000000065793

AUTHOR

Teemu Tyni

Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation

We consider the recovery of a potential associated with a semi-linear wave equation on Rn+1, n > 1. We show that an unknown potential a(x, t) of the wave equation ???u + aum = 0 can be recovered in a H & ouml;lder stable way from the map u|onnx[0,T] ???-> (11, avu|ac >= x[0,T])L2(oc >= x[0,T]). This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement function ???. We also prove similar stability result for the recovery of a when there is noise added to the boundary data. The method we use is constructive and it is based on the higher order linearization. As a consequence, we also get a uniqueness result. We also give a detailed presentation of the forw…

research product

Inverse problems for elliptic equations with fractional power type nonlinearities

We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.

research product

Uniqueness and stability of an inverse problem for a semi-linear wave equation

We consider the recovery of a potential associated with a semi-linear wave equation on $\mathbb{R}^{n+1}$, $n\geq 1$. We show a H\"older stability estimate for the recovery of an unknown potential $a$ of the wave equation $\square u +a u^m=0$ from its Dirichlet-to-Neumann map. We show that an unknown potential $a(x,t)$, supported in $\Omega\times[t_1,t_2]$, of the wave equation $\square u +a u^m=0$ can be recovered in a H\"older stable way from the map $u|_{\partial \Omega\times [0,T]}\mapsto \langle\psi,\partial_\nu u|_{\partial \Omega\times [0,T]}\rangle_{L^2(\partial \Omega\times [0,T])}$. This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement fun…

research product

Optimal recovery of a radiating source with multiple frequencies along one line

We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.

research product