0000000000065864

AUTHOR

Kevin W. Lewis

showing 4 related works from this author

Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

2011

Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclasti…

MartianAtmospheric ScienceEcologyWater on MarsOutcropEarth scienceGeochemistryPaleontologySoil ScienceForestryEvidence of water on Mars from Mars OdysseyMars Exploration ProgramAquatic ScienceOceanographyGeologic recordGeologic mapGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Period (geology)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

2009

Over the last ~3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectromet…

BasaltOlivineThermal Emission SpectrometerRecrystallization (geology)GeochemistryMineralogyMars Exploration ProgramPyroxeneengineering.materialMars geologyGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyGusev CraterEarth and Planetary Sciences (miscellaneous)engineeringhydrothermal alterationTephraGeologyEarth and Planetary Science Letters
researchProduct

Pyroclastic Activity at Home Plate in Gusev Crater, Mars

2007

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

BasaltgeographyMultidisciplinarygeography.geographical_feature_categoryExplosive eruptionGeochemistryPyroclastic rockMineralogyVolcanic rockIgneous rockImpact craterPyroclastic surgeClastic rockGeologyScience
researchProduct

Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

2008

This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirit's data to understand the range of spectra…

Atmospheric Sciencegeographygeography.geographical_feature_categoryEcologyWater on MarsPaleontologySoil ScienceForestryMars Exploration ProgramAquatic ScienceOceanographyExploration of MarsCRISMAstrobiologyMars roverGeophysicsVolcanoImpact craterSpace and Planetary ScienceGeochemistry and PetrologyRidgeEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct