0000000000065872

AUTHOR

Barbara A. Cohen

showing 11 related works from this author

Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

2011

Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclasti…

MartianAtmospheric ScienceEcologyWater on MarsOutcropEarth scienceGeochemistryPaleontologySoil ScienceForestryEvidence of water on Mars from Mars OdysseyMars Exploration ProgramAquatic ScienceOceanographyGeologic recordGeologic mapGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Period (geology)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Visible and near-infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum

2010

[1] We have used visible and near-infrared Panoramic Camera (Pancam) spectral data acquired by the Opportunity rover to analyze 15 rock fragments at the Meridiani Planum landing site. These spectral results were then compared to geochemistry measurements made by the in situ instruments Mossbauer (MB) and Alpha Particle X-ray Spectrometer (APXS) to determine the feasibility of mineralogic characterization from Pancam data. Our results suggest that dust and alteration rinds coat many rock fragments, which limits our ability to adequately measure the mineralogy of some rocks from Pancam spectra relative to the different field of view and penetration depths of MB and APXS. Viewing and lighting …

BasaltMeridiani PlanumAtmospheric ScienceEcologyOutcropNear-infrared spectroscopyMultispectral imagePaleontologySoil ScienceMineralogyForestryMars Exploration ProgramAquatic ScienceOceanographyGeophysicsMeteoriteRock fragmentSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-ray Spectrometer, and Miniature Thermal Emission Spectrom…

2008

Complete sets of mineral abundances for relatively unaltered volcanic or volcaniclastic rocks in Gusev Crater have been determined by modeling Mössbauer subspectral areas as mineral weight percentages, and combining those percentages with the proportions of iron-free minerals not detected by Mössbauer (normative plagioclase, apatite, and chromite, as calculated from Alpha Particle X-Ray Spectrometer (APXS) chemical analyses). Comparisons of synthetic thermal emission spectra calculated for these mineral modes with measured Miniature Thermal Emission Spectrometer (Mini-TES) spectra for the same rock classes show either good agreements or discrepancies that we attribute to sodic pla…

Atmospheric ScienceThermal Emission SpectrometerSoil ScienceMineralogyMarsPyroxeneAquatic Scienceengineering.materialAlpha particle X-ray spectrometerOceanographyFeldsparGeochemistry and PetrologyPigeoniteEarth and Planetary Sciences (miscellaneous)PlagioclaseEarth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryOlivineEcologyPaleontologyForestryVolcanic rockGeophysicsSpace and Planetary Sciencevisual_artvisual_art.visual_art_mediumengineeringGusev CratermineralogyGeology
researchProduct

Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate

2008

Geochemical diversity of rocks and soils has been discovered by the Alpha Particle X-Ray Spectrometer (APXS) during Spirit’s journey over Husband Hill and down into the Inner Basin from sol 470 to 1368. The APXS continues to operate nominally with no changes in calibration or spectral degradation over the course of the mission. Germanium has been added to the Spirit APXS data set with the confirmation that it occurs at elevated levels in many rocks and soils around Home Plate. Twelve new rock classes and two new soil classes have been identified at the Spirit landing site since sol 470 on the basis of the diversity in APXS geochemistry. The new rock classes are Irvine (alkaline basalt…

Atmospheric ScienceOutcropSoil ScienceMineralogyPyroclastic rockMarsWeatheringAquatic ScienceAlpha particle X-ray spectrometerOceanographyImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologygeochemistryBasaltEcologyPaleontologyForestrySoil classificationIgneous rockGeophysicsSpace and Planetary ScienceweatheringGeology
researchProduct

Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven

2008

[1] A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a un…

Atmospheric SciencePopulationGeochemistrySoil ScienceMineralogyAquatic ScienceOceanographyTexture (geology)Impact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)SedimentologyPebbleeducationEarth-Surface ProcessesWater Science and TechnologyMartiangeographyeducation.field_of_studygeography.geographical_feature_categoryEcologyPaleontologyForestryGeophysicsVolcanoSpace and Planetary ScienceAeolian processesGeologyJournal of Geophysical Research
researchProduct

Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spiri…

2008

[1] Spirit's Mossbauer (MB) instrument determined the Fe mineralogy and oxidation state of 71 rocks and 43 soils during its exploration of the Gusev plains and the Columbia Hills (West Spur, Husband Hill, Haskin Ridge, northern Inner Basin, and Home Plate) on Mars. The plains are predominantly float rocks and soil derived from olivine basalts. Outcrops at West Spur and on Husband Hill have experienced pervasive aqueous alteration as indicated by the presence of goethite. Olivine-rich outcrops in a possible mafic/ultramafic horizon are present on Haskin Ridge. Relatively unaltered basalt and olivine basalt float rocks occur at isolated locations throughout the Columbia Hills. Basalt and oliv…

Atmospheric ScienceGeochemistrySoil ScienceMineralogyWeatheringPyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyUltramafic rockEarth and Planetary Sciences (miscellaneous)MarcasiteEarth-Surface ProcessesWater Science and TechnologyBasaltOlivineEcologyPaleontologyForestryPalagoniteGeophysicsSpace and Planetary ScienceengineeringMaficGeologyJournal of Geophysical Research
researchProduct

Diverse Lithologies and Alteration Events on the Rim of Noachian‐Aged Endeavour Crater, Meridiani Planum, Mars: In Situ Compositional Evidence

2018

We report the results of geological studies by the Opportunity Mars rover on the Endeavour Crater rim. Four major units occur in the region (oldest to youngest): the Matijevic, Shoemaker, Grasberg, and Burns formations. The Matijevic formation, consisting of fine‐grained clastic sediments, is the only pre‐Endeavour‐impact unit and might be part of the Noachian etched units of Meridiani Planum. The Shoemaker formation is a heterogeneous polymict impact breccia; its lowermost member incorporates material eroded from the underlying Matijevic formation. The Shoemaker formation is a close analog to the Bunte Breccia of the Ries Crater, although the average clast sizes are substantially larger in…

Meridiani Planum010504 meteorology & atmospheric sciencesLithologyNoachianGeochemistry010502 geochemistry & geophysics01 natural sciencesGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyClastic rockBrecciaEarth and Planetary Sciences (miscellaneous)HesperianVein (geology)Geology0105 earth and related environmental sciencesJournal of Geophysical Research: Planets
researchProduct

Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity

2010

Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity’s contact instruments, providing information about elemental chemistry (Alpha Particle X‐ray Spectrometer), iron mineralogy and oxidation states (Mossbauer Spectrometer) and texture (Microscopic Imager). These "cobbles" appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate‐rich bedroc…

Meridiani PlanumBasaltAtmospheric Sciencegeographygeography.geographical_feature_categoryEcologyOutcropBedrockPaleontologySoil ScienceMineralogyForestryMars Exploration ProgramAquatic ScienceOceanographyMesosideriteGeophysicsMeteoriteSpace and Planetary ScienceGeochemistry and PetrologyGroup (stratigraphy)Earth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Pyroclastic Activity at Home Plate in Gusev Crater, Mars

2007

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

BasaltgeographyMultidisciplinarygeography.geographical_feature_categoryExplosive eruptionGeochemistryPyroclastic rockMineralogyVolcanic rockIgneous rockImpact craterPyroclastic surgeClastic rockGeologyScience
researchProduct

Exploration of Victoria Crater by the Mars Rover Opportunity

2009

“Lake” Victoria? After having explored the Eagle and Endurance craters, which are separated by only 800 meters, the Mars Exploration Rover Opportunity spent 2 years at Victoria, a much larger impact crater located 6 kilometers south across Meridiani Planum. Sedimentary rocks previously analyzed at Eagle and Endurance point to local environmental conditions that included abundant liquid water in the ancient past. Now, an analysis of rocks in the walls of Victoria by Squyres et al. (p. 1058 ) reveals that the aqueous alteration processes that operated at Eagle and Endurance also acted at Victoria. In addition, sedimentary layering in the crater walls preserves evidence of ancient windblown du…

Meridiani PlanumMultidisciplinaryWater on MarsExtraterrestrial EnvironmentGeochemistryMarsWaterMars Exploration Programengineering.materialFerric CompoundsMars roverImpact craterStratigraphyConcretionengineeringSedimentary rockSpacecraftGeology
researchProduct

Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, an…

2006

Additonal co-authors: P Gutlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidson

Meridiani PlanumAtmospheric ScienceOutcropGeochemistrySoil ScienceMineralogyPyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyJarositeEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologyBasaltOlivineEcologyPaleontologyForestryMars Exploration ProgramHematiteGeophysicsSpace and Planetary Sciencevisual_artengineeringvisual_art.visual_art_mediumGeologyJournal of Geophysical Research: Planets
researchProduct