Boron mobility in deciduous forest trees in relation to their polyols
Summary • Boron (B) has been found to be phloem mobile in species that translocate polyols, whereas it is almost immobile in other species. The objectives of the present study were to survey B mobility in deciduous trees, and to relate it to the presence of polyols. • The stable isotope 10B was applied as a tracer to mature leaves of seedlings, and growing leaves were subsequently harvested for B isotope analysis. • Extensive B mobility was found in Sorbus aucuparia and Prunus padus, species with high sorbitol content, but also in Ulmus glabra, with only trace amounts of B-complexing polyols. Alnus incana, Fraxinus excelsior, Betula pubescens and Larix sibirica also translocated 10B into ne…
Leaf life span and the mobility of "non-mobile" mineral nutrients - The case of boron in conifers
Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral nutrients, but for non-mobile nutrients long leaf life spans concurrently cause concentrations in tissues to increase with leaf age, and consequently may reduce non-mobile nutrient use efficiency. Here we analyze how the role of leaf life span is related to the mobility of nutrients within the plant. We use optimality concepts to derive…