0000000000065985

AUTHOR

Michael G. S. Londesborough

showing 25 related works from this author

Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4'-(HS)2-anti-…

2013

The tuning of the photophysical properties of the highly fluorescent boron hydride cluster anti-B18H22 (1), by straightforward chemical substitution to produce 4,4'-(HS)2-anti-B18H20 (2), facilitates intersystem crossing from excited singlet states to a triplet manifold. This subsequently enhances O2((1)Δg) singlet oxygen production from a quantum yield of ΦΔ ∼ 0.008 in 1 to 0.59 in 2. This paper describes the synthesis and full structural characterization of the new compound 4,4'-(HS)2-anti-B18H20 (2) and uses UV-vis spectroscopy coupled with density functional theory (DFT) and ab initio computational studies to delineate and explain its photophysical properties.

Inorganic Chemistrychemistry.chemical_compoundIntersystem crossingchemistryHydrideSinglet oxygenAb initioQuantum yieldDensity functional theoryPhysical and Theoretical ChemistrySpectroscopyPhotochemistryFluorescenceInorganic chemistry
researchProduct

A theoretical analysis of the structure and properties of B26H30 isomers. Consequences to the laser and semiconductor doping capabilities of large bo…

2019

Decaborane(14), nido-B10H14, is the major commercially available molecular building block in boron cluster chemistry. The condensation of two such {nido-B10} blocks gives the known isomers of B18H22 – a molecule used in the fabrication of p-type semiconductors and capable of blue laser emission. Here, we computationally determine the structures and thermodynamic stabilities of 20 possible B26H30 regioisomers constructed from the fusion of three {nido-B10} blocks with the three subclusters conjoined by two-boron atom shared edges. In addition, density functional theory, time-dependent (TD)-DFT and multiconfigurational CASPT2 methods have been used to model and investigate the physical and ph…

Materials sciencebusiness.industryDopingCluster chemistryGeneral Physics and Astronomy02 engineering and technologyBorane010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundSemiconductorchemistryChemical physicsDecaboraneStructural isomerMoleculeDensity functional theoryPhysical and Theoretical Chemistry0210 nano-technologybusinessPhysical Chemistry Chemical Physics
researchProduct

Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron h…

2018

Reaction of anti-B18H221 with pyridine in neutral solvents gives sparingly soluble B16H18-3',8'-Py23a as the major product (ca. 53%) and B18H20-6',9'-Py22 (ca. 15%) as the minor product, with small quantities of B18H20-8'-Py 4 (ca. 1%) also being formed. The three new compounds 2, 3a and 4 are characterized by single-crystal X-ray diffraction analyses and by multinuclear multiple-resonance NMR spectroscopy. Compound 2 is of ten-vertex nido:ten-vertex arachno two-atoms-in-common architecture, long postulated for a species with borons-only cluster constitution, but previously elusive. Compound 3a is of unprecedented ten-vertex nido:eight-vertex arachno two-atoms-in-common architecture. The si…

010405 organic chemistryQuantum yieldNuclear magnetic resonance spectroscopyBorane010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographysymbols.namesakechemistryPyridinesymbolsPicolinevan der Waals forcePhosphorescenceDerivative (chemistry)Dalton Transactions
researchProduct

Thermochromic Fluorescence from B18H20(NC5H5)2: An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry

2017

BH(NCH) is a rare example of two conjoined boron hydride subclusters of nido and arachno geometrical character. At room temperature, solutions of BH(NCH) emit a 690 nm fluorescence. In the solid state, this emission is shifted to 620 nm and intensifies due to restriction of the rotation of the pyridine ligands. In addition, there is a thermochromicity to the fluorescence of BH(NCH). Cooling to 8 K engenders a further shift in the emission wavelength to 585 nm and a twofold increase in intensity. Immobilization in a polystyrene thin-film matrix results in an efficient absorption of pumping excitation energy at 414 nm and a 609 nm photostable fluorescence. Such fluorescence from polystyrene t…

ThermochromismMaterials scienceHydrideBoranes02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescenceAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryPolystyrene0210 nano-technologySpectroscopyLuminescenceAbsorption (electromagnetic radiation)
researchProduct

Distinct Photophysics of the Isomers of B18H22 Explained

2012

The photophysics of the two isomers of octadecaborane(22), anti- and syn-B 18H 22, have been studied by UV-vis spectroscopic techniques and theoretical computational methods. In air-saturated hexane, anti-B 18H 22 shows fluorescence with a high quantum yield, Φ F = 0.97, and singlet oxygen O 2( 1Δ g) production (Φ Δ ∼ 0.008). Conversely, isomer syn-B 18H 22 shows no measurable fluorescence, instead displaying much faster, picosecond nonradiative decay of excited singlet states. Computed potential energy hypersurfaces (PEHs) for both isomers rationalize these data, pointing to a deep S 1 minimum for anti-B 18H 22 and a conical intersection (CI) between its S 0 and S 1 states that lies 0.51 e…

CzechPhotochemistryChemistryFoundation (engineering)Library science02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescencelanguage.human_language0104 chemical sciencesInorganic ChemistryIsomerismlanguagemedia_common.cataloged_instanceSpectrophotometry UltravioletChristian ministryPhysical and Theoretical ChemistryEuropean unionBoranes0210 nano-technologymedia_commonInorganic Chemistry
researchProduct

A Series of Ultra-Efficient Blue Borane Fluorophores

2020

13 pags., 14 figs., 5 tabs.

Active laser mediumSeries (mathematics)010405 organic chemistryHydridechemistry.chemical_elementBoraneAlkylation010402 general chemistryLaser01 natural sciencesCombinatorial chemistry0104 chemical scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundchemistrylawPhysical and Theoretical ChemistryBoron
researchProduct

Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen

2019

Treatment of the laser borane anti-B18H22 (compound 1) with iodine in ethanol gives the monoiodinated derivative 7-I-anti-B18H21 (compound 2) in 67% yield, or, by reaction with iodine or ICl in the presence of AlCl3 in dichloromethane, the diiodinated derivative 4,4'-I2-anti-B18H20 (compound 3) in 85% yield. On excitation with 360 nm light, both compounds 2 and 3 give strong green phosphorescent emissions (λmax = 525 nm, ΦL = 0.41 and λmax = 545 nm, ΦL = 0.71 respectively) that are quenched by dioxygen to produce O2(1Δg) singlet oxygen with quantum yields of ΦΔ = 0.52 and 0.36 respectively. Similarly strong emissions can be stimulated via the nonlinear process of two-photon absorption when …

010405 organic chemistrySinglet oxygenNuclear magnetic resonance spectroscopyBorane010402 general chemistryPhotochemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryYield (chemistry)Physical and Theoretical ChemistrySpectroscopyPhosphorescenceDerivative (chemistry)DichloromethaneInorganic Chemistry
researchProduct

Unveiling the role of upper excited electronic states in the photochemistry and laser performance of: anti -B18H22

2020

13 pags., 7 figs., -- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers

Blue lasereducation.field_of_studyMaterials sciencePopulationGeneral ChemistryBoraneLaserPhotochemistryQuantum chemistrylaw.inventionchemistry.chemical_compoundchemistryAtomic orbitallawExcited stateMaterials ChemistrySpectroscopyeducationJournal of Materials Chemistry C 8: 12806-12818 (2020)
researchProduct

CCDC 1441506: Experimental Crystal Structure Determination

2018

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B

Space GroupCrystallographyCrystal SystemCrystal Structure5'6':56-conjuncto-(3'8'-bis(pyridine-N)-4'5':6'7'-di-muH-arachno-octaborane)-(89:910-di-muH-nido-decaborane)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2009109: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallography5'6':67-conjuncto-(33'-dimethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(44'-dimethyl-56:89:910-tri-muH-nido-decaborane)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2009108: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallographyCrystal System5'6':67-conjuncto-(33'-dimethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(4-methyl-56:89:910-tri-muH-nido-decaborane)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1514165: Experimental Crystal Structure Determination

2020

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Luis Cerdán, Kamil Lang, Tomáš Jelínek, Josep M. Oliva, Drahomír Hnyk, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Jiří Martinčík, Martin Nikl, John D. Kennedy|2017|Adv. Opt. Mater.|5|1600694|doi:10.1002/adom.201600694

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates5'10':56-conjuncto-(6'9'-bis(pyridine-N)-7'8'-muH-nido-decaborane)-(67:89:910-tri-muH-nido-decaborane)
researchProduct

CCDC 2009112: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

5'6':67-conjuncto-(22'-dichloro-11'33'44'-hexamethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(77'88'10'-pentamethyl-56:89:910-tri-muH-nido-decaborane) 5'6':67-conjuncto-(22'-dichloro-11'33'44'-hexamethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(77'88'1010'-hexamethyl-56:89:910-tri-muH-nido-decaborane)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2009113: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallographyCrystal SystemCrystal Structure5'6':67-conjuncto-(3-methyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(44'-dimethyl-56:89:910-tri-muH-nido-decaborane)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1859436: Experimental Crystal Structure Determination

2019

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Jonathan Bould, Jakub Braborec, Kaplan Kirakci, Kamil Lang, Ivana Císařová, Pavel Kubát, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Lenka Slušná, Eva Noskovičová, Dušan Lorenc|2019|Inorg.Chem.|58|10248|doi:10.1021/acs.inorgchem.9b01358

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5'6':67-conjuncto-(4'-iodo-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(4-iodo-56:89:910-tri-muH-nido-decaborane) benzene solvateExperimental 3D Coordinates
researchProduct

CCDC 2009110: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallography5'6':67-conjuncto-(33'-dimethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(44'-dimethyl-56:89:910-tri-muH-nido-decaborane)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1441507: Experimental Crystal Structure Determination

2018

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates5'10':56-conjuncto-(6'9'-bis(pyridine-N)-7'8'-muH-nido-decaborane)-(67:89:910-tri-muH-nido-decaborane)
researchProduct

CCDC 2009106: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5'6':67-conjuncto-(4'-methyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(34-dimethyl-56:89:910-tri-muH-nido-decaborane)Experimental 3D Coordinates
researchProduct

CCDC 2009105: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallography5'6':67-conjuncto-(4'-methyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(4-methyl-56:89:910-tri-muH-nido-decaborane)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2009107: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallographyCrystal System5'6':67-conjuncto-(33'-dimethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(4-methyl-56:89:910-tri-muH-nido-decaborane)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1441504: Experimental Crystal Structure Determination

2018

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B

Space GroupCrystallography5'6':56-conjuncto-(3'8'-bis(4-methylpyridine-N)-4'5':6'7'-di-muH-arachno-octaborane)-(89:910-di-muH-nido-decaborane)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1859437: Experimental Crystal Structure Determination

2019

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Jonathan Bould, Jakub Braborec, Kaplan Kirakci, Kamil Lang, Ivana Císařová, Pavel Kubát, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Lenka Slušná, Eva Noskovičová, Dušan Lorenc|2019|Inorg.Chem.|58|10248|doi:10.1021/acs.inorgchem.9b01358

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5'6':67-conjuncto-(5-iodo-56:89:910-tri-muH-nido-decaborane)-(6'7':8'9':9'10'-tri-muH-nido-decaborane)Experimental 3D Coordinates
researchProduct

CCDC 2009111: Experimental Crystal Structure Determination

2020

Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5'6':67-conjuncto-(33'-dimethyl-6'7':8'9':9'10'-tri-muH-nido-decaborane)-(448'-trimethyl-56:89:910-tri-muH-nido-decaborane)Experimental 3D Coordinates
researchProduct

CCDC 1441505: Experimental Crystal Structure Determination

2018

Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B

5'6':56-conjuncto-(10'-(pyridine-N)-6'7':8'9'-di-muH-nido-decaborane)-(67:89:910-tri-muH-nido-decaborane)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 912917: Experimental Crystal Structure Determination

2013

Related Article: Vicenta Saurí, Josep M. Oliva, Drahomír Hnyk, Jonathan Bould, Jakub Braborec, Manuela Merchán, Pavel Kubát, Ivana Císařová, Kamil Lang, and Michael G. S. Londesborough|2013|Inorg.Chem.|52|9266|doi:10.1021/ic4004559

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters44'-Dithiol-anti-octadecaborane benzene solvateExperimental 3D Coordinates
researchProduct