0000000000066474

AUTHOR

Antonio D. Polosa

showing 6 related works from this author

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Dark matter, dark photon and superfluid He-4 from effective field theory

2020

We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.

High Energy Physics - Theorylight dark matterNuclear and High Energy PhysicsPhotonDark matterFOS: Physical scienceshelium01 natural sciencesDark photonVector bosonStandard ModelSuperfluidityeffective theoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory010306 general physicsphononLight dark matterPhysics010308 nuclear & particles physicslcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsdark photondark photon; effective theory; helium; light dark matter; phononlcsh:Physics
researchProduct

Towards the european strategy for particle physics: The briefing book

2007

This document was prepared as part of the briefing material for the Workshop of the CERN Council Strategy Group, held in DESY Zeuthen from 2nd to 6th May 2006. It gives an overview of the physics issues and of the technological challenges that will shape the future of the field, and incorporates material presented and discussed during the Symposium on the European Strategy for Particle Physics, held in Orsay from 30th January to 2nd February 2006, reflecting the various opinions of the European community as recorded in written submissions to the Strategy Group and in the discussions at the Symposium.

High Energy Physics - TheoryParticle physicsANTIHYDROGENPhysics and Astronomy (miscellaneous)European communityNEUTRINO OSCILLATIONSFOS: Physical sciencesddc:500.2ACCELERATION01 natural sciencesELECTRON-BEAMSHigh Energy Physics - ExperimentENERGYHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FIELD010306 general physicsEngineering (miscellaneous)Particle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicshep-exLHC LUMINOSITY UPGRADE[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Field (Bourdieu)hep-thFísicaDESYhep-phHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)LASER-PULSES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]DOUBLE-BETA DECAY
researchProduct

Sub-MeV dark matter and the Goldstone modes of superfluid helium

2019

We show how the relativistic effective field theory for the superfluid phase of helium-4 can replace the standard methods used to compute the production rates of low momentum excitations due to the interaction with an external probe. This is done by studying the scattering problem of a light dark matter particle in the superfluid, and comparing to some existing results. We show that the rate of emission of two phonons, the Goldstone modes of the effective theory, gets strongly suppressed for sub-MeV dark matter particles due to a fine cancellation between two different tree-level diagrams in the limit of small exchanged momenta. This phenomenon is found to be a consequence of the particular…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsPhononDark matterFOS: Physical sciencesdark matter detection01 natural sciencesHigh Energy Physics - ExperimentSuperfluidityMomentumHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)effective quantum field theoriesHigh Energy Physics - Phenomenology (hep-ph)Orders of magnitude (time)dark matter detection; effective quantum field theoriesQuantum electrodynamics0103 physical sciencesEffective field theory010306 general physicsLight dark matterSuperfluid helium-4Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

2019

We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptio…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesElectron7. Clean energy01 natural sciencesPartícules (Física nuclear)Hamiltonian systemNeutrino massRelic neutrino0103 physical sciencesTransverse drift filter010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PTOLEMYPhysicsMagnetic moment010308 nuclear & particles physicsCNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filterInstrumentation and Detectors (physics.ins-det)CNBFilter (signal processing)CNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filter; Nuclear and High Energy PhysicsComputational physicsEnergy conservationHarmonicAstrophysics - Instrumentation and Methods for AstrophysicsNeutrino maEnergy (signal processing)Cosmic Neutrino BackgroundVoltageProgress in Particle and Nuclear Physics
researchProduct

The Belle II Physics Book

2019

cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…

B: semileptonic decayPhysics beyond the Standard ModelHadronelectroproduction [charmonium]General Physics and AstronomyComputingMilieux_LEGALASPECTSOFCOMPUTINGB: radiative decayannihilation [electron positron]7. Clean energy01 natural sciencescharmonium: electroproductionB physicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Z'law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)dark sector searchesPhysicslifetimeradiative decay [B]doublet [Higgs particle]new physicsPhysicsHigh Energy Physics - Lattice (hep-lat)ddc:530Electroweak interactionlepton: flavor: violationhep-phParticle Physics - LatticeMonte Carlo [numerical calculations]electron positron: colliding beamsQuarkoniumasymmetry: CPquarkonium physicselectroweak interaction: penguinHigh Energy Physics - PhenomenologyImproved performancecolliding beams [electron positron]CP violationinterfaceelectroproduction [quarkonium]electroweak precision measurementsnumerical calculations: Monte CarlophysicsParticle Physics - ExperimentperformanceParticle physicsflavor: violation [lepton]reviewhep-latFOS: Physical sciencesBELLEHigh Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyelectron positron: annihilationquarkonium: electroproductionCP [asymmetry]E(6)Higgs particle: doubletmixing [D0 anti-D0]Theoretical physicsCP: violation: time dependenceHigh Energy Physics - LatticeKEK-B0103 physical sciencesquantum chromodynamicshidden sector [photon]ddc:530composite010306 general physicsColliderParticle Physics - PhenomenologyHigh Energy Physics - Experiment; High Energy Physics - Lattice; High Energy Physics - Phenomenologyphoton: hidden sectorhep-ex010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]C50 Other topics in experimental particle physicsviolation: time dependence [CP]D0 anti-D0: mixingB2TiP530 PhysikExperimental physicsB: leptonic decayCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]penguin [electroweak interaction]leptonic decay [B]semileptonic decay [B]charmparticle identificationexperimental results
researchProduct