Estrogenic activity of zearalenone, α-zearalenol and β-zearalenol assessed using the E-Screen assay in MCF-7 cells
Mycotoxins, including zearalenone (ZEA), can occur worldwide in cereals. They can enter the food chain and cause several health disorders. ZEA and its derivatives (α-zearalenol, α-ZOL and β-zearalenol, β-ZOL) have structural analogy to estrogen, thus they can bind to estrogen receptors (ERs). In order to characterize the estrogenic activity of ZEA, α-ZOL and β-ZOL, the proliferation of ER-positive human breast cancer cells (MCF-7) exposed to these mycotoxins was measured. After exposure at levels ranging from 6.25 to 25 µM, cell proliferation was evaluated by using the E-Screen bioassay. In accordance with previous studies, our results show the estrogenic activity of ZEA, α-ZOL and β-ZOL in…
Progress on bringing together raptor collections in Europe for contaminant research and monitoring in relation to chemicals regulation.
Paola Movalli et al.
The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU’s zero pollution ambition
Movalli, Paola et al.
Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells.
Mycotoxin contamination of foods and feeds represent a serious problem worldwide. Zearalenone (ZEA) is a secondary metabolite produced by Fusarium species. This study explores oxidative cellular damage and intracellular defense mechanisms (enzymatic and non-enzymatic) in the hepatoma cell line HepG2 after exposure to ZEA and its metabolites (α-zearalenol, α-ZOL; β-zearalenol, β-ZOL). Our results demonstrated that HepG2 cells exposed to ZEA, α-ZOL or β-ZOL at different concentrations (0, 6.25, 12.5 and 25μM) showed: (i) elevated ROS levels (1.5- to 7-fold) based on the formation of the highly fluorescent 2',7'-dichlorofluorescein (DCF), (ii) increased DNA damage measured by the comet assay (…