0000000000066762
AUTHOR
S. G. Kovalenko
New leptoquark mechanism of neutrinoless double beta decay
A new mechanism for neutrinoless double beta ($\znbb$) decay based on leptoquark exchange is discussed. Due to the specific helicity structure of the effective four-fermion interaction this contribution is strongly enhanced compared to the well-known mass mechanism of $\znbb$ decay. As a result the corresponding leptoquark parameters are severely constrained from non-observation of $\znbb$-decay. These constraints are more stringent than those derived from other experiments.
Short-range mechanisms of neutrinoless double beta decay at the LHC
Lepton number violation (LNV) mediated by short- range operators can manifest itself in both neutrinoless double beta decay (0 nu beta beta) and in processes with same- sign dilepton final states at the LHC. We derive limits from existing LHC data at root s = 8 TeV and compare the discovery potential of the forthcoming root s = 14 TeV phase of the LHC with the sensitivity of current and future 0 nu beta beta decay experiments, assuming the short-range part of the 0 nu beta beta decay amplitude dominates. We focus on the first of two possible topologies triggered by one fermion and two bosons in the intermediate state. In all cases, except for the pure leptoquark mechanism, the LHC will be m…