0000000000066813
AUTHOR
M. C. Pedraza-aguilera
On a class of p-soluble groups
[EN] Let p be a prime. The class of all p-soluble groups G such that every p-chief factor of G is cyclic and all p-chief factors of G are G-isomorphic is studied in this paper. Some results on T-, PT-, and PST -groups are also obtained.
A Characterization of the Class of Finite Groups with Nilpotent Derived Subgroup
The class of all finite groups with nilpotent commutator subgroup is characterized as the largest subgroup-closed saturated formation 𝔉 for which the 𝔉-residual of a group generated by two 𝔉-subnormal subgroups is the subgroup generated by their 𝔉–residuals.
On the exponent of mutually permutable products of two abelian groups
In this paper we obtain some bounds for the exponent of a finite group, and its derived subgroup, which is a mutually permutable product of two abelian subgroups. They improve the ones known for products of finite abelian groups, and they are used to derive some interesting structural properties of such products.
On mutually permutable products of finite groups
Abstract In this paper a structural theorem about mutually permutable products of finite groups is obtained. This result is used to derive some results on mutually permutable products of groups whose chief factors are simple. Some earlier results on mutually permutable products of supersoluble groups appear as particular cases.
On sigma-subnormal subgroups of factorised finite groups
Abstract Let σ = { σ i : i ∈ I } be a partition of the set P of all prime numbers. A subgroup X of a finite group G is called σ-subnormal in G if there is chain of subgroups X = X 0 ⊆ X 1 ⊆ ⋯ ⊆ X n = G with X i − 1 normal in X i or X i / C o r e X i ( X i − 1 ) is a σ i -group for some i ∈ I , 1 ≤ i ≤ n . In the special case that σ is the partition of P into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality. If a finite soluble group G = A B is factorised as the product of the subgroups A and B, and X is a subgroup of G such that X is σ-subnormal in 〈 X , X g 〉 for all g ∈ A ∪ B , we prove that X is σ-subnormal in G. This is an extension…
Characterizations of Schunck Classes of Finite Soluble Groups
All groups considered in this paper are finite and soluble.Characterization of Schunck classes and saturated formations by meansof certain embedding properties of their associated projectors plays animportant part in the Theory of Classes of Groups.Schunck classes whose projectors are normal subgroups were studied byBlessenohl and Gaschutz. They characterize these classes as the classes
Finite Trifactorized Groups and Formations
This research is supported by Proyecto PB 97-0674-C02-02 of DGICYT, MEC, Spain.
A class of generalised finite T-groups
Let F be a formation (of finite groups) containing all nilpotent groups such that any normal subgroup of any T-group in F and any subgroup of any soluble T-group in F belongs to F. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. Named after Kegel, a subgroup U of a finite group G is called a K- F-subnormal subgroup of G if either U=G or U=U0?U1???Un=G such that Ui?1 is either normal in Ui or Ui1 is F-normal in Ui, for i=1,2,...,n. We call a finite group G a TF-group if every K- F-subnormal subgroup of G is normal in G. When F is the class of all finite nilpotent groups, the TF-groups are precisely the T-groups. The aim of this paper is to analyse the…
Sufficient conditions for supersolubility of finite groups
Abstract In this paper sufficient conditions for the supersolubility of finite groups are given under the assumption that the maximal subgroups of Sylow subgroups of the group and the maximal subgroups of Sylow subgroups of the Fitting subgroup are well-situated in the group. That will improve earlier results of Srinivasan [7], Asaad et al. [1] and Ballester-Bolinches [2].
Finite groups which are products of pairwise totally permutable subgroups
Finite groups which are products of pairwise totally permutable subgroups are studied in this paper. The -residual, -projectors and -normalizers in such groups are obtained from the corresponding subgroups of the factor subgroups under suitable hypotheses.
On finite products of totally permutable groups
In this paper the structure of finite groups which are the product of two totally permutable subgroups is studied. In fact we can obtain the -residual, where is a formation, -projectors and -normalisers, where is a saturated formation, of the group from the corresponding subgroups of the factor subgroups.
OnF-Subnormal Subgroups andF-Residuals of Finite Soluble Groups
All groups that we consider are finite and soluble. Recall that a formation is a class of groups which is closed under homomorphic images and subdirect products. Hence, if F is a formation and G is a group which is a direct product of the subgroups A and B, then G is in F if and only if A and B lie in F. More generally, Doerk and w x Hawkes 4, IV, 1.18 proved that if G is a group such that G s A = B, then G s A = B , where G is the F-residual of G, that is, the smallest normal subgroup of G with quotient in F. The main purpose of this paper is the development of this result by means of the concept of F-subnormal subgroup. Suppose that F is a saturated formation. A maximal subgroup M of a Ž …
On minimal subgroups of finite groups
Finite Soluble Groups with Permutable Subnormal Subgroups
Abstract A finite group G is said to be a PST -group if every subnormal subgroup of G permutes with every Sylow subgroup of G . We shall discuss the normal structure of soluble PST -groups, mainly defining a local version of this concept. A deep study of the local structure turns out to be crucial for obtaining information about the global property. Moreover, a new approach to soluble PT -groups, i.e., soluble groups in which permutability is a transitive relation, follows naturally from our vision of PST -groups. Our techniques and results provide a unified point of view for T -groups, PT -groups, and PST -groups in the soluble universe, showing that the difference between these classes is…