0000000000066829

AUTHOR

Romain Z. Martin

showing 4 related works from this author

Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

2014

The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifical…

AgingMyeloidReceptor Transforming Growth Factor-beta Type IReceptors Cell SurfaceCell SeparationBiologyProtein Serine-Threonine KinasesTransforming Growth Factor beta1MiceSignaling Lymphocytic Activation Molecule Family Member 1Antigens CDmedicineAnimalsMyeloid CellsRNA MessengerPolyubiquitinTranscription factorCellular SenescenceRegulation of gene expressionMultidisciplinaryUbiquitinationhemic and immune systemsBiological SciencesHematopoietic Stem CellsCell biologyHematopoiesisHaematopoiesismedicine.anatomical_structurePhysiological AgingPhenotypeGene Expression RegulationSignal transductionStem cellCell agingReceptors Transforming Growth Factor betaSignal TransductionTranscription FactorsProceedings of the National Academy of Sciences of the United States of America
researchProduct

A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages

2013

AbstractThe differentiation of human peripheral blood monocytes into macrophages can be reproduced ex vivo by culturing the cells in the presence of colony-stimulating factor 1 (CSF1). Using microarray profiling to explore the role of microRNAs (miRNAs), we identified a dramatic decrease in the expression of the hematopoietic specific miR-142-3p. Up- and down-regulation of this miRNA in primary human monocytes altered CSF1-induced differentiation of monocytes, as demonstrated by changes in the expression of the cell surface markers CD16 and CD163. One of the genes whose expression is repressed by miR-142-3p encodes the transcription factor Early Growth Response 2 (Egr2). In turn, Egr2 assoc…

Macrophage colony-stimulating factorAntigens Differentiation MyelomonocyticDown-RegulationChronic myelomonocytic leukemiaReceptors Cell SurfaceCD16BiologyGPI-Linked ProteinsMonocyte–macrophage differentiationMonocytesChronic myelomonocytic leukemiaAntigens CDCell Line TumorMiR-142-3pmedicineHumansTranscription factorMolecular BiologyEarly Growth Response Protein 2Early Growth Response Protein 1Cluster of differentiationMolecular circuitryMacrophage Colony-Stimulating FactorMacrophagesReceptors IgGCell DifferentiationLeukemia Myelomonocytic ChronicCell Biologymedicine.diseaseUp-RegulationRepressor ProteinsMicroRNAsHaematopoiesisMonocyte differentiationCancer researchEgr2K562 CellsK562 cellsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct

MiR-142-3p et leucémogenèse

2013

Cancer researchGeneral MedicineBiologyGeneral Biochemistry Genetics and Molecular Biologymédecine/sciences
researchProduct

Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells

2013

International audience; MOZ and MLL encoding a histone acetyltransferase and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. We have previously shown that MOZ and MLL cooperate to activate HOXA9 gene expression in hematopoietic stem/progenitors cells. To dissect the mechanism of action of this complex, we decided to identify new proteins interacting with MOZ. We found that the scaffold protein Symplekin that supports the assembly of polyadenylation machinery was identified by mass spectrometry. Symplekin interacts and co-localizes with both MOZ and MLL in immature hematopoietic cells. Its …

MLLScaffold proteinPolyadenylationHematopoietic System[SDV]Life Sciences [q-bio]PolyadenylationCell Line03 medical and health scienceschemistry.chemical_compound0302 clinical medicinehemic and lymphatic diseasesGene expressionTranscriptional regulationHumansRNA MessengerPromoter Regions GeneticSymplekinHSF1neoplasmsMolecular BiologyHistone Acetyltransferases030304 developmental biologyHomeodomain ProteinsmRNA Cleavage and Polyadenylation Factors0303 health sciences[ SDV ] Life Sciences [q-bio]biologyNuclear ProteinsHistone-Lysine N-MethyltransferaseHOXA9Transcription regulationCell BiologyHistone acetyltransferaseMOZCell biology[SDV] Life Sciences [q-bio]Protein TransportRUNX1chemistry030220 oncology & carcinogenesisHistone methyltransferaseCancer researchbiology.proteinMyeloid-Lymphoid Leukemia ProteinProtein BindingBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct