Atomistic modeling of crystal structure of Ca1.67SiHx
The atomic structure of calcium-silicate-hydrate (C-1.67-S-H-x) has been investigated by theoretical methods in order to establish a better insight into its structure. Three models for C-S-H all derived from tobermorite are proposed and a large number of structures were created within each model by making a random distribution of silica oligomers of different size within each structure. These structures were subjected to structural relaxation by geometry optimization and molecular dynamics steps. That resulted in a set of energies within each model. Despite an energy distribution between individual structures within each model, significant energy differences are observed between the three m…
OpenMolcas: From Source Code to Insight
In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…
Revised Atomistic Models of the Crystal Structure of C–S–H with high C/S Ratio
Abstract The atomic structure of calcium-silicate-hydrate (C1.67–S–H x ) has been studied. Atomistic C–S–H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C–S–H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C–S–H. The new geometries of C–S–H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C–S…
2MOLCAS as a development platform for quantum chemistry software
This work presents the quantum chemistry package MOLCAS, with emphasis on its usefulness as a platform for developing new quantum chemical codes, and the reader is assumed to be familiar with such a process. The development of new codes for quantum chemistry is a time-consuming job that can be dramatically simplified by using libraries for standard problems (such as calculation of integrals), and tools to surmount computer language and operating system limitations. The MOLCAS quantum chemistry software contains modules for a variety of quantum chemical methods, such as Hartree-Fock (HF), density functional theory (DFT), coupled-cluster (CC), and multiconfigurational (MCSCF) approaches, incl…