0000000000067253

AUTHOR

W. Tireman

Comparing proton momentum distributions in A = 2 and 3 nuclei via 2H 3H and 3He (e,e′p) measurements

We report the first measurement of the $(e,e'p)$ reaction cross-section ratios for Helium-3 ($^3$He), Tritium ($^3$H), and Deuterium ($d$). The measurement covered a missing momentum range of $40 \le p_{miss} \le 550$ MeV$/c$, at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV$/c$)$^2$) and $x_B>1$, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for $^3$He$/d$ and $^3$H$/d$ extend to just above the typical nucleon Fermi-momentum ($k_F \approx 250$ …

research product

Measurement of double-polarization asymmetries in the quasi-elastic Process

We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of He3 proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 250MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of He3 and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of He3 unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup pr…

research product