0000000000067343
AUTHOR
Juan M Sanchez
Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region
The Pampas Region is a big plain of approximately 520,000 km2 in Argentina. It is essential to estimate evapotranspiration (ET) in this region since the primary productivity is directly linked to water availability. Information provided by satellite missions allows monitoring the spatial and temporal variability of ET. In the current study, we evaluated the version 006 of MOD16A2 product (MOD16A2.006) of Potential Evapotranspiration (ETp) and Actual Evapotranspiration (ETa) in Argentinian Pampas Region (APR). MOD16A2.006 product was compared with Crop Evapotranspiration (ETc), calculated with local measurements from the Oficina de Riesgo Agropecuario (ORA), and Crop Coefficient (Kc) data (f…
Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas
Evapotranspiration is the hydrological variable of greatest relevance in the Argentina Pampas Region (APR). The estimation of potential evapotranspiration (PET) in this area becomes essential since primary productivity is directly linked to water availability. In order to evaluate the MOD16_A2 product of evapotranspiration (ET), a comparison with in situ measurements was conducted. We used ET data provided by the Oficina de Riesgo Agropecuario, corresponding to 24 stations placed in the region covering all seasons for the years 2012 to 2014. Results show an overestimation of 86% and 52% in Autumn-Winter and Spring-Summer, respectively. Mean Absolut Error (MAE) range between ±0.9 and ±2.1 mm…
Temperature and emissivity separation from ASTER data for low spectral contrast surfaces
Abstract The performance of Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) thermal infrared (TIR) data product algorithms was evaluated for low spectral contrast surfaces (such as vegetation and water) in a test site close to Valencia, Spain. Concurrent ground measurements of surface temperature, emissivity, and atmospheric radiosonde profiles were collected at the test site, which is a thermally homogeneous area of rice crops with nearly full vegetation cover in summer. Using the ground data and the local radiosonde profiles, at-sensor radiances were simulated for the ASTER TIR channels and compared with L1B data (calibrated at-sensor radiances) showing discrepancies up…
Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry
Abstract A new technique for the local adjustments in crop coefficients is presented. This is an alternative to conventional lysimeter measurements traditionally used for improved irrigation scheduling. The method is based on the combination of a two-source energy balance model and local measurements of radiometric temperatures. Two experimental campaigns were carried out on sunflower and canola in a cropland area located in Barrax, Albacete, in the summer of 2011 and spring of 2012, respectively. Radiometric temperatures of soil and canopy were collected, together with biophysical and meteorological variables. Combining all these data in a two-source energy balance model allowed separation…
Simulation of surface energy fluxes and meteorological variables using the Regional Atmospheric Modeling System (RAMS): Evaluating the impact of land-atmosphere coupling on short-term forecasts
Atmospheric mesoscale numerical models are commonly used not only for research and air quality studies, but also for other related applications, such as short-term weather forecasting for atmospheric, hydrological, agricultural and ecological modelling. A key element to produce faithful simulations is the proper representation of the soil parameters used in the initialization of the corresponding mesoscale numerical model. The Regional Atmospheric Modeling System (RAMS) is used in the current study. The model code has been updated in order to permit the model to be initialized using a heterogeneous soil moisture and temperature distribution derived from land surface models. Particularly, RA…
Combining a Two-Source Patch Model with Satellite Data to Monitor Daily Evapotranspiration at a Regional Scale
In this work, we present a micro-meteorological approach for estimating surface energy fluxes that can be operationally used together with satellite images to monitor surface energy fluxes at a regional scale. In particular we will focus on the retrieval of daily evapotranspiration. The feasibility of the model is explored at a local scale using data collected over a maize crop in Beltsville, Maryland, USA, and a boreal forest in Sodankyla, Finland. Comparison of the results with ground measurements shows errors between plusmn15 and plusmn50 W m-2 for the retrieval of net radiation, soil heat flux, and sensible and latent heat fluxes in both sites. A methodology to apply the model to Landsa…
Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data
Abstract An experimental site was set up in a large, flat and homogeneous area of rice crops for the validation of satellite derived land surface temperature (LST). Experimental campaigns were held in the summers of 2002–2004, when rice crops show full vegetation cover. LSTs were measured radiometrically along transects covering an area of 1 km 2 . A total number of four thermal radiometers were used, which were calibrated and inter-compared through the campaigns. Radiometric temperatures were corrected for emissivity effects using field emissivity and downwelling sky radiance measurements. A database of ground-based LSTs corresponding to morning, cloud-free overpasses of Envisat/Advanced A…
Fire danger estimation from MODIS Enhanced Vegetation Index data: application to Galicia region (north-west Spain)
Galicia, in north-west Spain, is a region especially affected by devastating forest fires. The development of a fire danger prediction model adapted to this particular region is required. In this paper, we focus on changes in the condition of vegetation as an indicator of fire danger. The potential of the Enhanced Vegetation Index (EVI) together with period-of-year to monitor vegetation changes in Galicia is shown. The Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the Terra satellite, was chosen for this study. A 6-year dataset of EVI images, from the product MOD13Q1 (16-day composites), together with fire data in a 10 × 10-km grid basis, were used. Logistic regression was…
Comparison of in Situ Land Surface Temperatures Measured with Radiometers and Pyrgeometers: Consequences for Calibration and Validation of Thermal Infrared Sensors
Land surface temperature (LST) is a key magnitude in many exchange processes between the surface and the atmosphere. LST measurement from satellites provides an efficient way to monitor its change across wide areas on Earth, an essential issue being LST validation using in situ measurements to assess its accuracy and precision. Presently, there are two widely used methodologies: temperature measurements made by wideband radiometers observing the land surface with a given viewing angle and a limited field of view, and measurements provided by total radiation pyrgeometers with a nearly hemispheric field of view. Although both measurements are correlated, they are not equivalent; thus, it is r…
Estimating energy balance fluxes above a boreal forest from radiometric temperature observations
Abstract The great areal extent of boreal forests confers these ecosystems potential to impact on the global surface-atmosphere energy exchange. A modelling approach, based on a simplified two-source energy balance model, was proposed to estimate energy balance fluxes above boreal forests using thermal infrared measurements. Half-hourly data from the Solar-Induced Fluorescence Experiment, carried out in a Finnish boreal forest, was used to evaluate the performance of the model. Energy balance closure, determined by linear regression, found all fluxes to underestimate available energy by 9% (r2 = 0.94). Significance in the energy balance of the heat storage in the air and in the soil terms w…
Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region
Summary The increasing interest of hydrological, climatic and meteorological models in the different components of the surface energy balance has encouraged the development of operational methods for estimating surface energy fluxes at a regional scale. In this paper, a sequence of three high-resolution satellite-based surface energy fluxes images are analyzed over an extensive area with a large variety of land uses. Two images from Landsat 7-ETM+ (1999, 2002) and one from Landsat 5-TM (2004) are collected covering the whole Basilicata region (Southern Italy). A Simplified version of a Two-Source Energy Balance (STSEB) model is used to retrieve the surface sensible heat flux. A balance betw…
A Cloudless land atmosphere radiosounding database for generating land surface temperature retrieval algorithms
A database of global, cloud-free, atmospheric radiosounding profiles was compiled with the aim of simulating radiometric measurements from satellite-borne sensors in the thermal infrared. The objective of the simulation is to generate split-window (SW) and dual-angle (DA) algorithms for the retrieval of land surface temperature (LST) from Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) and Envisat/advanced along track scanning radiometer (AATSR) data. The database contains 382 radiosonde profiles acquired over land, with nearly-uniform distribution of precipitable water between 0 and 5.5 cm. Radiative transfer calculations were performed with the MODTRAN 4 code. Different viewin…
Impact of Land Cover Change Induced by a Fire Event on the Surface Energy Fluxes Derived from Remote Sensing
Forest fires affect the natural cycle of the vegetation, and the structure and functioning of ecosystems. As a consequence of defoliation and vegetation mortality, surface energy flux patterns can suffer variations. Remote sensing techniques together with surface energy balance modeling offer the opportunity to explore these changes. In this paper we focus on a Mediterranean forest ecosystem. A fire event occurred in 2001 in Almodovar del Pinar (Spain) affecting a pine and shrub area. A two-source energy balance approach was applied to a set of Landsat 5-TM and Landsat 7-EMT+ images to estimate the surface fluxes in the area. Three post-fire periods were analyzed, six, seven, nine, and 11 y…
Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers
Abstract Successive re-calibrations were implemented in Landsat-8 TIRS data since launch. This paper evaluates the performances of both: (1) these re-calibrations, up to the last calibration update announced for TIRS data in the next Landsat Collection 2; and (2) single-channel (SC) corrections and split-window (SW) algorithms to retrieve land surface temperature (LST) from TIRS data. A robust and accurate multi-year (2014–2019) set of reference ground data were used, which included thermal infrared (TIR) radiance measurements taken along transects in a uniform and thermally homogeneous rice paddy area, but also emissivity measurements for the different ground covers at the site through the…
Evaluation of the B‐method for determining actual evapotranspiration in a boreal forest from MODIS data
Boreal forests occupy about 11% of the terrestrial surface and represent an important contribution to global energy balance. The ground measurement of daily evapotranspiration (LEd) is very difficult due to the limitations on experiments. The objective of this paper is to present and explore the applicability of the B-method for monitoring actual LEd in these ecosystems. The method shown in this paper allows us to determine the surface fluxes over boreal forests on a daily basis from instantaneous information registered in a conventional meteorological tower, as well as the canopy temperature (T c) retrieved by satellite. Images collected by the MODIS (moderate resolution imaging spectrorad…
Thermal Infrared Emissivity Dependence on Soil Moisture in Field Conditions
An accurate estimate of land surface temperature, which is a key parameter in surface energy balance models, requires knowledge of surface emissivity. Emissivity dependence on soil water content has been already reported and modeled under controlled conditions at the laboratory. This paper completes and extends that previous work by providing emissivity measurements under field conditions without elimination of impurities, local heterogeneities, or soil cracks appearing in the drying process. The multispectral radiometer CE312-2, with five narrow bands and a broad band in the 8-13-μm range, was used, and surface emissivity values were determined through a temperature-emissivity separation a…
Estimating high resolution evapotranspiration from disaggregated thermal images
Abstract Accurate evapotranspiration (ET) estimations based on surface energy balance from remote sensing require information in the thermal infrared (TIR) domain, normally provided with an insufficient spatial resolution. In order to estimate ET in heterogeneous agricultural areas, we inspect in this paper the use of disaggregation techniques applied to two different sensors, such as MODIS (daily revisit cycle and 1 km spatial resolution in the TIR domain) and Spot 5 (5 days revisit cycle and 10 m spatial resolution in the VNIR bands but no TIR band). Spot 5 images were used as a proxy for upcoming Sentinel-2. The Simplified Two-Source Energy Balance (STSEB) model was used for the estimati…
Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations
Abstract Models estimating surface energy fluxes over partial canopy cover with thermal remote sensing must account for significant differences between the radiometric temperatures and turbulent exchange rates associated with the soil and canopy components of the thermal pixel scene. Recent progress in separating soil and canopy temperatures from dual angle composite radiometric temperature measurements has encouraged the development of two-source (soil and canopy) approaches to estimating surface energy fluxes given observations of component soil and canopy temperatures. A Simplified Two-Source Energy Balance (STSEB) model has been developed using a “patch” treatment of the surface flux so…
Soil Moisture Effect on Thermal Infrared (8–13-μm) Emissivity
Thermal infrared (TIR) emissivities of soils with different textures were measured for several soil moisture (SM) contents under controlled conditions using the Box method and a high-precision multichannel TIR radiometer. The results showed a common increase of emissivity with SM at water contents lower than the field capacity. However, this dependence is negligible for higher water contents. The highest emissivity variations were observed in sandy soils, particularly in the 8-9-μm range due to water adhering to soil grains and decreasing the reflectance in the 8-9-μm quartz doublet region. Thus, in order to model the emissivity dependence on soil water content, different approaches were st…
Discrimination of Lithogenic and Anthropogenic Metals in Calcareous Agricultural Soils: A Case Study of the Lower Vinalopó Region (SE Spain)
Analysis of heavy metal concentrations in soils and their sources is required to identify agricultural areas affected by contamination on a regional level, according to the European Thematic Strategy for Soil Protection. Pseudo-total and EDTA-extractable concentrations of nine elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in eighteen agricultural soils with vegetable crops in the Lower Vinalopo region (southeast Spain) were determined. The main aim was to assess the present state of the agricultural soils in relation to contamination processes by heavy metals for a representative area of the Mediterranean region under semiarid conditions. The pseudo-total concentrations for heavy metals …
Analysis of the energy balance closure over a FLUXNET boreal forest in Finland
Abstract. The imbalance in the surface energy budget, when using eddy-covariance techniques to measure turbulent fluxes, is still an unresolved problem. Important progresses have been reported in recent years identifying potential reasons for this lack of energy balance closure. In this paper we focus on the data collected in a FLUXNET boreal forest site in Sodankylä, Finland. Using one month half-hourly data, an average Energy Balance Ratio (EBR) of 0.72 is obtained. The inclusion of the heat storage terms in the energy budget yields an improvement of about 6% in the total closure. The sensitivity of the energy balance closure to the turbulence intensity is analysed in terms of the frictio…
Towards the Operational Spatialization of the Single Band Thermal Atmospheric Correction. Application to Landsat 7 ETM+
This work aims to improve the accuracy in Land Surface Temperature (LST) from single-channel thermal sensors by providing spatialized maps of transmittance, upwelling and downwelling atmospheric radiances required in the radiative transfer equation. Two different techniques are introduced for the estimation of pixel-by-pixel atmospheric parameters, focusing on the correction of Landsat Thermal Infrared (TIR) data. First technique is based on the linearization of the atmospheric parameters with the total column water vapor (W), extracted from the MOD05 product, whereas a second technique uses the Single Band Atmospheric Correction (SBAC) tool. Ground-measured values of LST in an agricultural…
Lysimeter assessment of the Simplified Two-Source Energy Balance model and eddy covariance system to estimate vineyard evapotranspiration
Abstract Estimation of crop water needs plays a key role in the water resource management in arid and semi-arid regions. Actual evapotranspiration (ETa) becomes the key term in both water and energy balances at this point. In this work we focus on vineyard due to the significance of this crop for La Mancha region, Spain, with the greatest concentration of vineyards in the world. Eddy-covariance (EC) technique has been traditionally used for ground observations of ETa. One of the aims of this work is to assess the feasibility of an EC system under the challenging conditions of a small drip-irrigated vineyard in a semi-arid environment. Two-source energy balance modelling allows for ETa estim…
A simple equation for determining sea surface emissivity in the 3–15 µm region
The high level of accuracy demanded for the sea surface temperature retrieval from infrared data requires an accurate determination of directional sea surface emissivity (SSE). Previous models have permitted calculating SSEs using a physical characterization of sea surface roughness and emission. However, these result in complex equations, and make an operational application difficult. This paper presents a simple SSE algorithm based on a parametrization of one of these models, which was selected as a reference since it reproduces SSE experimental data to a reasonable level of accuracy. The parametrization provides the SSE variation with observation angle and wind speed from a given nadir S…
Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data
Fire danger models are a very useful tool for the prevention and extinction of forest fires. Some inputs of these models, such as vegetation status and temperature, can be obtained from remote sensing images, which offer higher spatial and temporal resolution than direct ground measures. In this paper, we focus on the Galicia region (north-west of Spain), and MODIS (Moderate Resolution Imaging Spectroradiometer) images are used to monitor vegetation status and to obtain land surface temperature as essential inputs in forest fire danger models. In this work, we tested the potential of artificial neural networks and logistic regression to estimate forest fire danger from remote sensing and f…
In situ surface temperature retrieval in a boreal forest under variable cloudiness conditions
Canopy temperature retrieval was one of the purposes during the Solar Induced FLuorescence EXperiment (SIFLEX‐2002) of the European Space Agency, carried out in a Finnish boreal forest. In this work, we describe the strategy used to determine this temperature from ground thermal infrared (TIR) data under skies with variable cloud cover. TIR radiance was measured by a CIMEL Electronique CE 312 radiometer. An analysis of the radiative transfer equation showed which terms were necessary to obtain accurate surface temperatures during the campaign. Atmospheric correction was considered negligible due to the small atmospheric path, but hemispheric downwelling sky radiance determination was needed…
Determining irrigation needs of sorghum from two-source energy balance and radiometric temperatures
Abstract. Estimates of surface actual evapotranspiration (ET) can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor) field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB) model was evaluated…
SMOS Level-2 Soil Moisture Product Evaluation in Rain-Fed Croplands of the Pampean Region of Argentina
A field campaign was carried out to evaluate the Soil Moisture (SM) MIR-SMUDP2 product (v5.51) generated from the data of the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) aboard the Soil Moisture and Ocean Salinity (SMOS) mission. The study area was the Pampean Region of Argentina, which was selected because it is a vast area of flatlands containing quite homogeneous rain-fed croplands, which are considered SMOS nominal land uses and hardly affected by radio-frequency interference contamination. Transects of ground handheld SM measurements were performed using ThetaProbe ML2x probes within four Icosahedral Snyder Equal Area Earth (ISEA) grid nodes, where permanent SM statio…
Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain
Abstract Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often pr…
Evaluation of split-window and dual-angle correction methods for land surface temperature retrieval from Envisat/Advanced Along Track Scanning Radiometer (AATSR) data
[1] Land surface temperature (LST) can be derived from thermal infrared remote sensing data provided that atmospheric and emissivity effects are corrected for. In this paper, two correction methods were evaluated using a database of ground LST measurements and concurrent Envisat/Advanced Along Track Scanning Radiometer (AATSR) data. They were the split-window (SW) method, which uses two channels at 11 and 12 μm, and the dual-angle (DA) method, using one single channel (11 μm) at two observation angles (close to nadir and around 55° forward). The ground LST measurements were performed in a large, flat, and thermally homogeneous area of rice fields during the summers of 2002–2005, when the cr…
Improved meteorology and surface fluxes in mesoscale modelling using adjusted initial vertical soil moisture profiles
The Regional Atmospheric Modeling System (RAMS) is being used for different and diverse purposes, ranging from atmospheric and dispersion of pollutants forecasting to agricultural meteorology and ecological modelling as well as for hydrological purposes, among others. The current paper presents a comprehensive assessment of the RAMS forecasts, comparing the results not only with observed standard surface meteorological variables, measured at FLUXNET stations and other portable and permanent weather stations located over the region of study, but also with non-standard observed variables, such as the surface energy fluxes, with the aim of evaluating the surface energy budget and its relation …
Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images
Remote sensing techniques can be used to estimate water quality variables such as chlorophyll ${\mbi a}$ , total suspended particles, and water transparency. This paper describes empirical algorithms for the estimation of these variables using Landsat Thematic Mapper (TM) data. Ground data were taken from several Spanish lakes covering a variety of trophic statuses, ranging from oligotrophic to hypereutrophic. The studied lakes were the Albufera de Valencia and lakes and ponds of the Southeast Regional Park in Madrid. Empirical equations were obtained to estimate chlorophyll ${\mbi a}$ from the ratio in reflectance values between bands 2 and 4 of TM ( $\bf{ R^2 \, {\mmb =}\, 0.66}$ , ${\bf …
LAND USE CHANGE DETECTION AS A BASIS FOR ANALYSING DESERTIFICATION PROCESSES: A CASE STUDY IN TABERNAS (ALMERIA, SPAIN)
12 paginas, 5 figuras, 1 tabla. Proceedings of the NATO Mediterranean Dialogue Workshop on Desertification in the Mediterranean Region. A Security Issue -- Part III. Assessing land use change relative to anthropogenic and natural cause. Valencia, Spain 2-5 December 2003
Evaluation of Disaggregation Methods for Downscaling MODIS Land Surface Temperature to Landsat Spatial Resolution in Barrax Test Site
Thermal infrared (TIR) data are usually acquired at a coarser spatial resolution (CR) than visible and near infrared (VNIR). Several disaggregation methods have been recently developed to enhance the TIR spatial resolution using VNIR data. These approaches are based on the retrieval of a relation between TIR and VNIR data at CR, or training of a neural network, to be applied at the fine resolution afterward. In this work, different disaggregation methods are applied to the combination of two different sensors in the experimental test site of Barrax, Spain. The main objective is to test the feasibility of these techniques when applied to satellites provided with no TIR bands. Landsat and mod…
Pixel-oriented land use classification in energy balance modelling
Mass and energy transfer between soil, vegetation and atmosphere is the process that allows to maintain an adequate energy and water balance in the earth–atmosphere system. However, the evaluation of the energy balance components, such as the net radiation and the sensible and latent heat fluxes, is characterized by significant uncertainties related to both the dynamic nature of heat transfer processes and surfaces heterogeneity. Therefore, a detailed land use classification and an accurate evaluation of vegetation spatial distribution are required for an accurate estimation of these variables. For this purpose, in the present article, a pixel-oriented supervised classification was applied …
Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS images
Forest fires are one of the most dangerous natural hazards, especially when they are recurrent. In areas such as Galicia (Spain), forest fires are frequent and devastating. The development of fire risk models becomes a very important prevention task for these regions. Vegetation and moisture indices can be used to monitor vegetation status; however, the different indices may perform differently depending on the vegetation species. Eight different spectral indices were selected to determine the most appropriate index in Galicia. This study was extended to the adjacent region of Asturias. Six years of MODIS (Moderate Resolution Imaging Spectroradiometer) images, together with ground fire data…
In situ angular measurements of thermal infrared sea surface emissivity—Validation of models
Abstract In this paper, sea surface emissivity (SSE) measurements obtained from thermal infrared radiance data are presented. These measurements were carried out from a fixed oilrig under open sea conditions in the Mediterranean Sea during the WInd and Salinity Experiment 2000 (WISE 2000). The SSE retrieval methodology uses quasi-simultaneous measurements of the radiance coming from the sea surface and the downwelling sky radiance, in addition to the sea surface temperature (SST). The radiometric data were acquired by a CIMEL ELECTRONIQUE CE 312 radiometer, with four channels placed in the 8–14 μm region. The sea temperature was measured with high-precision thermal probes located on oceanog…
Understanding the Effects of Fires on Surface Evapotranspiration Patterns Using Satellite Remote Sensing in Combination with an Energy Balance Model
Forest fires are highly destructive for nature, affecting the landscape, the natural cicle of the vegetation, and the structure and functioning of ecosystems. Beyond that, they also provoke changes in the local and regional meteorology, and particularly in the surface energy flux patterns. In a fire-affected area, changes in the ecosystem structure and species composition modify the evapotranspiration (LE) and the rest of the terms involved in the energy balance equation. Besides, these changes in the local energy balance may persist for decades (Randerson et al., 2006). There is an increasing concern among the scientific community about the effect of forest fires on climate change at this …
Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem
Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output fro…
Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements
Ground-based measurements of land-surface temperature (LST) performed in a homogeneous site of rice crops close to Valencia, Spain, were used for the validation of the calibration and the atmospheric correction of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) thermal band. Atmospheric radiosondes were launched at the test site around the satellite overpasses. Field-emissivity measurements of the near-full-vegetated rice crops were also performed. Seven concurrences of Landsat-7 and ground data were obtained in July and August 2004-2007. The ground measurements were used with the MODTRAN-4 radiative transfer model to simulate at-sensor radiances and brightness temperatures, which were c…
ESTIMACIÓN DE LA EVAPORACIÓN/TRANSPIRACIÓN EN UN CULTIVO DE TRIGO MEDIANTE RADIOMETRÍA TÉRMICA
[EN] This work shows the application of a two-source energy balance model, together with surface temperature measurements, to derive hourly and daily values of land surface energy fluxes of wheat, crop evapotranspiration (ETc) included. An experiment was carried out during the spring of 2014 in a wheat field located in the experimental farm of “Las Tiesas” in Barrax, Albacete. Soil and canopy radiometric temperatures were measured, as well as meteorological variables and biophysical parameters, from plantation to senescence. Results were compared to measurements in a weighing lysimeter installed within the wheat field. Estimation errors of ±0.10 mm h-1 and ±0.9 mm d-1 were obtained at hourl…