0000000000067451

AUTHOR

Julen Larrucea

0000-0003-0582-9259

showing 6 related works from this author

Density functional study of Cu2+-phenylalanine complex under micro-solvation environment

2013

Abstract We present an atomistic study carried out using density functional calculations including structural relaxations and Car–Parrinello Molecular Dynamics (CPMD) simulations, aiming to investigate the structures of phenylalanine-copper (II) ([Phe-Cu] 2+ ) complexes and their micro-solvation processes. The structures of the [Phe-Cu] 2+ complex with up to four water molecules are optimized using the B3LYP/6-311++G** model in gas phase to identify the lowest energy structures at each degree of solvation ( n  = 0–4). It is found that the phenylalanine appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n …

Models MolecularCar–Parrinello molecular dynamicsPhenylalanineMolecular ConformationDFTMolecular dynamicsMaterials ChemistryMicro-solvationMoleculePhysical and Theoretical ChemistryPhenylalanine-copper (II) complexStructural motifta116Spectroscopyta114LigandHydrogen bondChemistrySolvationHydrogen BondingComputer Graphics and Computer-Aided DesignCrystallographySolvation shellModels ChemicalCPMDCopperJOURNAL OF MOLECULAR GRAPHICS AND MODELLING
researchProduct

Structure and dynamics in liquid bismuth and Bin clusters: A density functional study

2014

Density functional/molecular dynamics simulations with more than 500 atoms have been performed on liquid bismuth at 573, 773, 923, and 1023 K and on neutral Bi clusters with up to 14 atoms. There are similar structural patterns (coordination numbers, bond angles, and ring patterns) in the liquid and the clusters, with significant differences from the rhombohedral crystalline form. We study the details of the structure (structure factor, pair, and cavity distribution functions) and dynamical properties (vibration frequencies, diffusion constants, power spectra), and compare with experimental results where available. While the three short covalent bonds typical to pnictogens are characteristi…

vibration frequencyCoordination numberGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural sciencesMolecular physicsBinBismuthMolecular dynamics0103 physical sciencesAtomPhysical and Theoretical Chemistry010306 general physicsconcentration variationspin-orbit couplingsta114021001 nanoscience & nanotechnologybismuth distribution functionsdynamical propertiesMolecular geometrychemistrydensity functionalsddc:540structure and dynamicsDensity functional theoryAtomic physics0210 nano-technologyStructure factordensity-functional studycoordination numberJournal of chemical physics
researchProduct

Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study

2012

Early stages of nucleus-driven crystallization of the prototype phase change material Ge${}_{2}$Sb${}_{2}$Te${}_{5}$ have been studied by density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ``$ABAB$ squares'' ($A$: Ge, Sb, $B$: Te), and atoms of all elements move significantly. There is no evidence of cavity movement to the crystal-glass…

Materials scienceCondensed Matter PhysicsPhase-change materialElectronic Optical and Magnetic Materialslaw.inventionAmorphous solidMolecular dynamicsmedicine.anatomical_structureChemical physicslawPercolationmedicineCrystallizationNucleusPhysical Review B
researchProduct

Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge2Sb2Te5from density functional calculations

2011

The as-deposited (AD) amorphous structure of the prototype phase change material Ge${}_{2}$Sb${}_{2}$Te${}_{5}$ (GST-225) has been studied by density functional calculations for a 648-atom sample generated by computer-aided deposition at 300 K. The AD sample differs from a melt-quenched (MQ) sample in essential ways: (1) Ge atoms are predominantly tetrahedrally coordinated, and (2) homopolar and Ge-Sb bonds are more common and reduce the number of $\mathit{ABAB}$ squares ($A=\mathrm{Ge}$, Sb; $B=\mathrm{Te}$), the characteristic building blocks of the material. The first observation resolves the contradiction between measured (EXAFS) and calculated Ge-Te bond lengths, and the latter explain…

Materials scienceExtended X-ray absorption fine structureCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionAmorphous solidBond lengthCrystallographyPhase changePolymorphism (materials science)lawCovalent bondCrystallizationValence electronPhysical Review B
researchProduct

Ordering the amorphous – Structures in PBD LED materials

2012

Abstract The class of 2,5 disubstituted-1,3,4-oxadiazoles containing a biphenyl unit on one side is intensively used as electron transport materials to enhance the performance of organic light emitting diodes (OLEDs). In contrast to the ongoing research on these materials insights in their structure-property relationships are still incomplete. To overcome the structural tentativeness and ambiguities the crystal structures of 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, that of the related compound 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole and of 2-(4-biphenylyl)-5-(2,6-dimethylphenyl)-1,3,4-oxadiazole are determined. A comparison with the results of GAUSSIAN03 calculations and…

Biphenylbusiness.industryChemistryOrganic ChemistryInstitut für Physik und AstronomieCrystal structureAnalytical ChemistryAmorphous solidCharacterization (materials science)law.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographylawOLEDOptoelectronicsCrystallizationbusinessSpectroscopyJournal of Molecular Structure
researchProduct

CPMD simulation of Cu2+ -- phenylalanine complex under micro-solvated environment

2013

The study combines DFT calculations and CPMD simulations to investigate the structures of phenylalanine-copper (II) ([Phe-Cu]2+) complexes and the micro-solvation processes. ....It is found that the phenylalanine moiety appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n no less than 2). .... The present CPMD simulations reveal that the maximum coordination of Cu2+ in the presence of the Phe ligand does not exceed four: the oxygen atoms from three water molecules and one carboxyl oxygen atom of Phe. Any excess water molecules will migrate to the second solvation shell. Moreover a unique structural motif …

Chemical Physics (physics.chem-ph)Physics - Chemical PhysicsFOS: Physical sciences
researchProduct