0000000000067531

AUTHOR

Katarina Pelin

Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin.

We present comparisons of the clinical pictures in a series of 60 patients with nemaline myopathy in whom mutations had been identified in the genes for nebulin or skeletal muscle alpha-actin. In the patients with nebulin mutations, the typical form of nemaline myopathy predominated, while severe, mild or intermediate forms were less frequent. Autosomal recessive inheritance had been verified or appeared likely in all nebulin cases. In the patients with actin mutations, the severe form of nemaline myopathy was the most common, but some had the mild or typical form, and a few showed other associated features such as intranuclear rods or actin accumulation. Most cases were sporadic, but in ad…

research product

Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy

Nemaline myopathy is a clinically and genetically heterogeneous muscle disorder. In the nebulin gene we have detected a number of autosomal recessive mutations. Both autosomal dominant and recessive mutations have been detected in the genes for alpha -actin and alpha -tropomyosin 3. A recessive mutation causing nemaline myopathy among the Old Order Amish has recently been identified in the gene for slow skeletal muscle troponin T. As linkage studies had shown that at least one further gene exists for nemaline myopathy, we investigated another tropomyosin gene expressed in skeletal muscle, the beta -tropomyosin 2 gene. Screening 66 unrelated patients, using single strand conformation polymor…

research product

Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy

Muscle contraction results from the force generated between the thin filament protein actin and the thick filament protein myosin, which causes the thick and thin muscle filaments to slide past each other. There are skeletal muscle, cardiac muscle, smooth muscle and non-muscle isoforms of both actin and myosin. Inherited diseases in humans have been associated with defects in cardiac actin (dilated cardiomyopathy and hypertrophic cardiomyopathy), cardiac myosin (hypertrophic cardiomyopathy) and non-muscle myosin (deafness). Here we report that mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with two different muscle diseases, 'congenital myopathy with excess o…

research product