0000000000067533

AUTHOR

Kathryn N. North

0000-0003-0841-8009

Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin.

We present comparisons of the clinical pictures in a series of 60 patients with nemaline myopathy in whom mutations had been identified in the genes for nebulin or skeletal muscle alpha-actin. In the patients with nebulin mutations, the typical form of nemaline myopathy predominated, while severe, mild or intermediate forms were less frequent. Autosomal recessive inheritance had been verified or appeared likely in all nebulin cases. In the patients with actin mutations, the severe form of nemaline myopathy was the most common, but some had the mild or typical form, and a few showed other associated features such as intranuclear rods or actin accumulation. Most cases were sporadic, but in ad…

research product

Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases.

BACKGROUND Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. OBJECTIVE To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. METHODS We tested a targeted re-sequencing approach, using a 45…

research product

Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy

Muscle contraction results from the force generated between the thin filament protein actin and the thick filament protein myosin, which causes the thick and thin muscle filaments to slide past each other. There are skeletal muscle, cardiac muscle, smooth muscle and non-muscle isoforms of both actin and myosin. Inherited diseases in humans have been associated with defects in cardiac actin (dilated cardiomyopathy and hypertrophic cardiomyopathy), cardiac myosin (hypertrophic cardiomyopathy) and non-muscle myosin (deafness). Here we report that mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with two different muscle diseases, 'congenital myopathy with excess o…

research product