Custodial vector model
We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a $SU(2)_L\times SU(2)_R$ spectral global symmetry. This symmetry partially protects the electroweak S-parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton and associated Higgs channels.
Elementary Goldstone Higgs boson and dark matter
We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due to the embedding of the Yukawa and the electroweak gauge interactions that do not preserve the full SU(4) symmetry. At the one-loop order the top corrections dominate and align the vacuum in the direction where the Higgs is mostly a pseudo-Goldstone boson. Because of the perturbative and elementary nature of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson …
Effective Lagrangians for QCD: Deconfinement and Chiral Symmetry Restoration
Effective Lagrangians for Quantum Chromodynamics (QCD) especially suited for understanding deconfinement and chiral symmetry restoration at nonzero temperature and matter density are reviewed. These effective theories allow one to study generic properties of phase transitions using non-order parameter fields without loosing the information encoded in the true order parameter. {}For the pure gauge theory we demonstrate that, near the deconfining phase transition, the center group symmetry is naturally linked to the conformal anomaly. Another relevant outcome is that when the theory contains also quarks we can explain the intertwining of chiral symmetry restoration and deconfinement for QCD w…
Light composite Higgs and precision electroweak measurements on the Z resonance: An update
We update our analysis of technicolour theories with techniquarks in higher dimensional representations of the technicolour gauge group in the light of the new electroweak precision data on the Z resonance.
Supersymmetric Extension of Technicolor & Fermion Mass Generation
We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We use the resulting four-fermion operators to derive the low energy effective theory. We then determine the associated tree-level vacuum and low energy spectrum properties. Furthermore we investigate the phenomenological viability of the model by comparing its predictions with electroweak precision tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at…
Light Composite Higgs from Higher Representations versus Electroweak Precision Measurements -- Predictions for LHC
We investigate theories in which the technifermions in higher dimensional representations of the technicolor gauge group dynamically break the electroweak symmetry of the standard model. For the two-index symmetric representation of the gauge group the lowest number of techniflavors needed to render the underlying gauge theory quasi conformal is two. We confront the models with the recent electroweak precision measurements and demonstrate that the two technicolor theory is a valid candidate for a dynamical breaking of the electroweak symmetry. The electroweak precision measurements provide useful constraints on the relative mass splitting of the new leptons needed to cure the Witten anomaly…
Unnatural origin of fermion masses for technicolor
We explore the scenario in which the breaking of the electroweak symmetry is due to the simultaneous presence and interplay of a dynamical sector and an unnatural elementary Higgs. We introduce a low energy effective Lagrangian and constrain the various couplings via direct search limits and electroweak and flavor precision tests. We find that the model we study is a viable model of dynamical breaking of the electroweak symmetry.
First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model
We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled conformally to the Higgs sector as well as new fermions. We uncover the parameter space leading to a first order phase transition with(out) the Veltman conditions. We also discuss dark (matter) aspects of some of the models and compare with existing literature when appropriate. We observe that to accommodate both, a first order electroweak phase transition, and a phenomenologically viable dark matter …
extended MSSM
We investigate the perturbative regime of the Minimal Supersymmetric Con- formal Technicolor and show that it allows for a stable vacuum correctly breaking the electroweak symmetry. We nd that the particle spectrum is richer than the MSSM one since it features several new particles stemming out from the new N = 4 sector of the theory. The parameter space of the new theory is reduced imposing naturalness of the cou- plings and soft supersymmetry breaking masses, perturbativity of the model at the EW scale as well as phenomenological constraints. By studying the RGEs at two loops we nd that the Yukawa couplings of the heavy fermionic states
New Strong Interactions: From QCD to LHC
The concept of strong interactions need not be limited to the sector of physics taken by QCD. While this domain is investigated by RHIC, LHC will be able to probe potential new strong interactions simultaneously: Finding the precise mechanism for electroweak symmetry breaking is one of the prime problems of physics. Intricately linked to this point is the question after the true nature or even the existence of the Higgs boson. Here, we present stronly interacting theories providing an explanation for the hierarchy problem and leading to a light composite Higgs boson, favoured by experimental data. Our variation of the standard model is consistent with precision data. We achieve this accorda…
Orientifold theory dynamics and symmetry breaking
We show that it is possible to construct explicit models of electroweak symmetry breaking in which the number of techniflavors needed to enter the conformal phase of the theory is small and weakly dependent on the number of technicolors. Surprisingly, the minimal model with {\it just} two (techni)flavors, together with a suitable gauge dynamics, can be made almost conformal. The theories we consider are generalizations of orientifold type gauge theories, in which the fermions are in either two index symmetric or antisymmetric representation of the gauge group, as the underlying dynamics responsible for the spontaneous breaking of the electroweak symmetry. We first study their phase diagram,…