0000000000067653
AUTHOR
Marco Barchiesi
Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality
We provide a sharp quantitative version of the Gaussian concentration inequality: for every $r>0$, the difference between the measure of the $r$-enlargement of a given set and the $r$-enlargement of a half-space controls the square of the measure of the symmetric difference between the set and a suitable half-space. We also prove a similar estimate in the Euclidean setting for the enlargement with a general convex set. This is equivalent to the stability of the Brunn-Minkowski inequality for the Minkowski sum between a convex set and a generic one.
Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality
We provide a full quantitative version of the Gaussian isoperimetric inequality: the difference between the Gaussian perimeter of a given set and a half-space with the same mass controls the gap between the norms of the corresponding barycenters. In particular, it controls the Gaussian measure of the symmetric difference between the set and the half-space oriented so to have the barycenter in the same direction of the set. Our estimate is independent of the dimension, sharp on the decay rate with respect to the gap and with optimal dependence on the mass.