0000000000067653

AUTHOR

Marco Barchiesi

showing 2 related works from this author

Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality

2016

We provide a sharp quantitative version of the Gaussian concentration inequality: for every $r>0$, the difference between the measure of the $r$-enlargement of a given set and the $r$-enlargement of a half-space controls the square of the measure of the symmetric difference between the set and a suitable half-space. We also prove a similar estimate in the Euclidean setting for the enlargement with a general convex set. This is equivalent to the stability of the Brunn-Minkowski inequality for the Minkowski sum between a convex set and a generic one.

Pure mathematicsGaussianConvex setkvantitatiivinen tutkimus01 natural sciencesMeasure (mathematics)Square (algebra)010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsQuantitative Isoperimetric InequalitiesFOS: MathematicsMathematics::Metric Geometry0101 mathematicsConcentration inequalitySymmetric differenceMathematicsmatematiikkaApplied MathematicsProbability (math.PR)010102 general mathematicsMinkowski inequalityMinkowski additionBrunn–Minkowski inequalityGaussian concentration inequalitysymbols49Q20 52A40 60E15Mathematics - ProbabilityAnalysisAnalysis of PDEs (math.AP)Calculus of Variations and Partial Differential Equations
researchProduct

Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality

2017

We provide a full quantitative version of the Gaussian isoperimetric inequality: the difference between the Gaussian perimeter of a given set and a half-space with the same mass controls the gap between the norms of the corresponding barycenters. In particular, it controls the Gaussian measure of the symmetric difference between the set and the half-space oriented so to have the barycenter in the same direction of the set. Our estimate is independent of the dimension, sharp on the decay rate with respect to the gap and with optimal dependence on the mass.

Statistics and ProbabilityGaussianGaussian isoperimetric inequality01 natural sciencesPerimeterSet (abstract data type)symbols.namesakeMathematics - Analysis of PDEsDimension (vector space)quantitative isoperimetric inequalityFOS: MathematicsMathematics::Metric Geometry0101 mathematicsSymmetric differenceGaussian isoperimetric inequalityQuantitative estimatesMathematics010102 general mathematicsMathematical analysisProbability (math.PR)49Q20Gaussian measure010101 applied mathematicssymbolsHigh Energy Physics::Experiment60E15Statistics Probability and UncertaintyMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct