0000000000067732

AUTHOR

Natalia Sanchez-soriano

Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites

Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between s…

research product

Are dendrites in Drosophila homologous to vertebrate dendrites?

AbstractDendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display c…

research product

In developing Drosophila neurones the production of γ-amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and can be influenced by calcium

The presented work pioneers the embryonic Drosophila CNS for studies of the developmental regulation and function of gamma-amino butyric acid (GABA). We describe for the first time the developmental pattern of GABA in Drosophila and address underlying regulatory mechanisms. Surprisingly, and in contrast to vertebrates, detectable levels of GABA occur late during Drosophila neurogenesis, after essential neuronal proliferation and growth have taken place and synaptogenesis has been initiated. This timeline is almost unchanged when the GABA synthetase glutamate decarboxylase (GAD) is strongly misexpressed throughout the nervous system suggesting a tight post-translational regulation of GABA ex…

research product