0000000000067772

AUTHOR

Antonella Nastasi

0000-0003-1589-2235

A note on homoclinic solutions of (p,q)-Laplacian difference equations

We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.

research product

Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem

We establish the existence of a nontrivial and nonnegative solution for a double phase Dirichlet problem driven by a (p(z); q(z))-Laplacian operator plus a potential term. Our approach is variational, but the reaction term f need not satisfy the usual in such cases Ambrosetti-Rabinowitz condition.

research product

Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator

We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.

research product

Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition

The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.

research product

Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold

We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.

research product

Fixed point results on metric and partial metric spaces via simulation functions

We prove existence and uniqueness of fixed point, by using a simulation function and a lower semi-continuous function in the setting of metric space. As consequences of this study, we deduce several related fixed point results, in metric and partial metric spaces. An example is given to support the new theory.

research product

On ( p ( x ),  q ( x ))‐Laplace equations in ℝN without Ambrosetti‐Rabinowitz condition

In the present work, we consider a (p(x), q(x))-elliptic equation describing the behavior of a double-phase anisotropic problem which has relevance in electrorheological fluid applications. The analysis leads to the existence of weak (nonnegative) solutions in the special case of potential terms with critical frequency and a superlinear reaction term. In order to prove the existence result, we combine critical point theory of mountain pass type with related topological and variational methods. Basically, the approach is variational, but we do not impose any Ambrosetti-Rabinowitz type condition for the superlinearity of the reaction. More specifically, we apply the Euler-Lagrange functional …

research product

Some fixed point results via R-functions

We establish existence and uniqueness of fixed points for a new class of mappings, by using R-functions and lower semi-continuous functions in the setting of metric spaces. As consequences of this results, we obtain several known fixed point results, in metric and partial metric spaces. An example is given to support the new theory. A homotopy result for operators on a set endowed with a metric is given as application.

research product

Neumann p-Laplacian problems with a reaction term on metric spaces

We use a variational approach to study existence and regularity of solutions for a Neumann p-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.

research product

Higher integrability and stability of (p,q)-quasiminimizers

Using purely variational methods, we prove local and global higher integrability results for upper gradients of quasiminimizers of a $(p,q)$-Dirichlet integral with fixed boundary data, assuming it belongs to a slightly better Newtonian space. We also obtain a stability property with respect to the varying exponents $p$ and $q$. The setting is a doubling metric measure space supporting a Poincar\'e inequality.

research product

Regularity properties for quasiminimizers of a $(p,q)$-Dirichlet integral

Using a variational approach we study interior regularity for quasiminimizers of a $(p,q)$-Dirichlet integral, as well as regularity results up to the boundary, in the setting of a metric space equipped with a doubling measure and supporting a Poincar\'{e} inequality. For the interior regularity, we use De Giorgi type conditions to show that quasiminimizers are locally H\"{o}lder continuous and they satisfy Harnack inequality, the strong maximum principle, and Liouville's Theorem. Furthermore, we give a pointwise estimate near a boundary point, as well as a sufficient condition for H\"older continuity and a Wiener type regularity condition for continuity up to the boundary. Finally, we cons…

research product