0000000000067928

AUTHOR

Concita Sibilia

showing 5 related works from this author

Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach

2004

An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional photonic band gap (PBG) structures is discussed. Such structures, treated as double open optical cavities, are studied as part of a compound closed system including the electromagnetic radiative external bath. The electromagnetic field inside the photonic crystal is successfully represented by a new class of modes called quasinormal modes. Starting from this representation we introduce the Feynman's propagator to calculate the decay rate of a dipole inside a PBG structure, related to the density of modes, in the presence of the vacuum fluctuations outside the one-dimensional cavity.

Electromagnetic fieldPhysicsPhysics::OpticsPropagatorSecond quantizationDipolesymbols.namesakeQuantum mechanicsQuantum electrodynamicssymbolsFeynman diagramSpontaneous emissionQuantum fluctuationPhotonic crystal
researchProduct

Coherent control of stimulated emission inside one-dimensional photonic crystals

2004

In this paper, the quasinormal mode (QNM) theory is applied to discuss the quantum problem of an atom embedded inside a one-dimensional (1D) photonic band gap (PBG) cavity pumped by two counterpropagating laser beams. The e.m. field is quantized in terms of the QNMs in the 1D PBG and the atom modeled as a two-level system is assumed to be weakly coupled to just one of the QNMs. The main result of the paper is that the decay time depends on the position of the dipole inside the cavity, and can be controlled by the phase difference of the two laser beams.

PhysicsDipoleField (physics)Coherent controlQuantum mechanicsAtomQuasinormal modePhysics::OpticsPhysics::Atomic PhysicsStimulated emissionAtomic physicsQuantumPhotonic crystal
researchProduct

Coherent Control of Stimulated Emission inside one dimensional Photonic Crystals:Strong Coupling regime

2006

The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the ca…

Field (physics)Physics::Opticsquasinormal modeslaw.inventionPhotonic crystalslawElectromagnetismNormal modeQuantum mechanicsAtomSpontaneous emissionPhysics::Atomic PhysicsEmission spectrumBoundary value problemStimulated emissionQuantumPhysicsQuantum opticsLocal density of statesCondensed matter physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsClassical mechanicsCoherent controlOptical cavityExcited stateDensity of statesAtomic physics
researchProduct

Quasi-Normal Frequencies in Open Cavities: An Application to Photonic Crystals

2005

The electromagnetic field in an optical open cavity is analyzed in the framework of the Quasi-Normal Modes theory. The role of the complex quasi-normal frequencies in the transmission coefficient and their link with the density of quasi-modes function is clarified. An application to a quarter-wave symmetric one-dimensional photonic crystals is discussed to illustrate the usefulness and the meaning of our results.

Electromagnetic fieldPhysicsOpen cavitybusiness.industryQuantum opticHadronPhysics::OpticsLink (geometry)Function (mathematics)Condensed Matter Physicsquasinormal modesOpticsPhotonic crystalTransmission coefficientbusinessPhotonic crystalActa Physica Hungarica B) Quantum Electronics
researchProduct

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire

2020

A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT tr…

010302 applied physicsPhase transitionMaterials scienceTransition temperatureAnalytical chemistryPulsed laser depositionphase change material; VO202 engineering and technologyVO2 thin films021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaPulsed laser depositionTetragonal crystal systemVO20103 physical sciencesSapphireThermal hysteresisGeneral Materials ScienceCrystalliteThin film0210 nano-technologyphase change materialMonoclinic crystal systemSemiconductor-to-metal (SMT) transition
researchProduct