0000000000067938
AUTHOR
Marianne B. Müller
Early improvement as a resilience signal predicting later remission to antidepressant treatment in patients with Major Depressive Disorder: Systematic review and meta-analysis.
Early improvement of depressive symptoms during the first two weeks of antidepressant treatment has been discussed to be a resilience signal predicting a later positive treatment outcome in patients with Major Depressive Disorder (MDD). However, the predictive value of early improvement varies between studies, and the use of different antidepressants may explain heterogeneous results. The objective of this review was to assess the predictive value of early improvement on later response and remission and to identify antidepressants with the highest chance of early improvement. We included 17 randomized controlled trials investigating early improvement in 14,779 adult patients with MDD compar…
Early life adversity targets the transcriptional signature of hippocampal NG2+ glia and affects voltage gated sodium (Nav) channels properties
The precise mechanisms underlying the detrimental effects of early life adversity (ELA) on adult mental health remain still elusive. To date, most studies have exclusively targeted neuronal populations and not considered neuron-glia crosstalk as a crucially important element for the integrity of stress-related brain function. Here, we have investigated the impact of ELA, in the form of a limited bedding and nesting material (LBN) paradigm, on a glial subpopulation with unique properties in brain homeostasis, the NG2+ cells. First, we have established a link between maternal behavior, activation of the offspring's stress response and heterogeneity in the outcome to LBN manipulation. We furth…
Early onset of depression and treatment outcome in patients with major depressive disorder
Major depressive disorder (MDD) is a highly heterogeneous disorder, which may partly explain why treatment outcome using antidepressants is unsatisfactory. We investigated the onset of depression as a possible clinical marker for therapy response prediction in the context of somatic biomarkers blood pressure and plasma electrolyte concentration. 889 MDD patients were divided into early (EO, n = 226), intermediate (IO, n = 493), and late onset (LO, n = 169) patients and were analyzed for differences in socio-demographic and clinical parameters, comorbidities and treatment outcome as well as systolic blood pressure and electrolytes. EO patients more often suffered from a recurrent depression,…
Paroxetine Administration Affects Microbiota and Bile Acid Levels in Mice.
Recent interest in the role of microbiota in health and disease has implicated gut microbiota dysbiosis in psychiatric disorders including major depressive disorder. Several antidepressant drugs that belong to the class of selective serotonin reuptake inhibitors have been found to display antimicrobial activities. In fact, one of the first antidepressants discovered serendipitously in the 1950s, the monoamine-oxidase inhibitor Iproniazid, was a drug used for the treatment of tuberculosis. In the current study we chronically treated DBA/2J mice for 2 weeks with paroxetine, a selective serotonin reuptake inhibitor, and collected fecal pellets as a proxy for the gut microbiota from the animals…
Chronic social stress lessens the metabolic effects induced by a high-fat diet
Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high-fat diet (HFD), aggravates the metabolic phenotype and whether there are particularly sensitive time windows for the negative consequences of HFD exposure. Chronically stressed male mice and controls (CTRL) were kept under (i) SD-conditions, (ii) with HFD commencing post-CSD,…
Bioenergetic shift and actin cytoskeleton remodelling as acute vascular adaptive mechanisms to angiotensin II in murine retina and ophthalmic artery
Ocular vascular dysfunction is a major contributing factor to the pathogenesis of glaucoma. In recent years, there has been a renewed interest in the role of angiotensin II (Ang II) in mediating the disease progression. Despite its (patho)physiological importance, the molecular mechanisms underlying Ang II-mediated oxidative stress remain largely unexplored in the ocular vasculature. Here, we provide the first direct evidence of the alterations of proteome and signalling pathways underlying Ang II-elicited oxidative insult independent of arterial pressure changes in the ophthalmic artery (OA) and retina (R) employing an in vitro experimental model. Both R and OA were isolated from male C57B…
Chronic social defeat stress causes retinal vascular dysfunction
Abstract Purpose The roles of vascular dysfunction and chronic stress have been extensively discussed in the pathophysiology of glaucoma. Our aim was to test whether chronic stress causes retinal vascular dysfunction and therewith induces retinal ganglion cells (RGCs) loss. Methods Twelve mice underwent chronic social defeat (CSD) stress, while 12 mice received control treatment only. Intraocular pressure (IOP) was measured with a rebound tonometer. Blood plasma corticosterone concentration and adrenal gland weight were used to assess stress levels. Brn-3a staining in retinas and PPD staining in optic nerve cross sections were conducted to assess the survival of RGCs and axons respectively.…
Individual baseline behavioral traits predict the resilience phenotype after chronic social defeat
Abstract Chronic social defeat (CSD) has been widely used as a psychosocial stress model in mice, with the magnitude of CSD-induced social avoidance as the major behavioral hallmark of the resilient and susceptible groups. Despite significant progress in the study of the neurobiology of resilient and susceptible mice, the nature and ethological relevance of CSD-induced social avoidance and social approach, particularly measured using a CD1 mouse, needs conceptual clarification. Based on the findings of a recent study revealing substantial individuality in genetically homogeneous inbred mice, we investigated whether certain baseline individual characteristics of male C57BL/6J mice predict th…
Temporal profiling of an acute stress-induced behavioral phenotype in mice and role of hippocampal DRR1.
Abstract Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated …
Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory
Significance Stress-associated mental disorders and diabetes pose an enormous socio-economic burden. Glucose dysregulation occurs with both psychosocial and metabolic stress. While cognitive impairments are common in metabolic disorders such as diabetes and are accompanied by hyperglycemia, a causal role for glucose has not been established. We show that chronic social defeat (CSD) stress induces lasting peripheral and central hyperglycemia and impaired glucose metabolism in a subgroup of mice. Animals exhibiting hyperglycemia early post-CSD display spatial memory impairments that can be rescued by the antidiabetic empagliflozin. We demonstrate that individual stress vulnerability to glucos…
Reconceptualising resilience within a translational framework is supported by unique and brain-region specific transcriptional signatures in mice
ABSTRACTChronic social defeat (CSD) in mice has been increasingly employed in experimental resilience research. Particularly, the degree of CSD-induced social avoidance is used to classify animals into resilient (socially non-avoidant) versus susceptible (avoidant). In-spired by human data pointing to threat-safety discrimination and responsiveness to extinction training of aversive memories as characteristics of resilient individuals, we here describe a translationally informed stratification which identified three phenotypic subgroups of mice following CSD: the Discriminating-avoiders, characterised by successful social threat-safety discrimination and successful extinction of social avoi…
Sexually Dimorphic Behavioral Profile in a Transgenic Model Enabling Targeted Recombination in Active Neurons in Response to Ketamine and (2R,6R)-Hydroxynorketamine Administration
Background: Rapid-acting antidepressants ketamine and (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) have overcome some of the major limitations of classical antidepressants. However, little is known about sex-specific differences in the behavioral and molecular effects of ketamine and (2R,6R)-HNK in rodents. Methods: We treated mice with an intraperitoneal injection of either saline, ketamine (30 mg kg&minus
Chronic social defeat-induced social avoidance as a proxy of stress resilience in mice involves conditioned learning
Abstract Chronic social defeat (CSD)-induced social avoidance is considered to model a feature of stress-related mental dysfunction, while its absence has been used as a proxy of resilience in rodents. However, knowledge on the mechanisms shaping CSD-induced individual outcomes remains fragmentary. Fear conditioning has been described as a suitable model in humans for better understanding the pathophysiology of stress related mental disorders. We sought to explore the extent to which conditioned learning is involved in CSD-induced social avoidance. In experiment 1 (social avoidance specificity), C57BL/6 J male mice underwent CSD followed by a modified social interaction test offering the si…
Delineation of molecular pathway activities of the chronic antidepressant treatment response suggests important roles for glutamatergic and ubiquitin–proteasome systems
AbstractThe aim of this study was to identify molecular pathways related to antidepressant response. We administered paroxetine to the DBA/2J mice for 28 days. Following the treatment, the mice were grouped into responders or non-responders depending on the time they spent immobile in the forced swim test. Hippocampal metabolomics and proteomics analyses revealed that chronic paroxetine treatment affects glutamate-related metabolite and protein levels differentially in the two groups. We found significant differences in the expression of N-methyl-d-aspartate receptor and neuronal nitric oxide synthase proteins between the two groups, without any significant alterations in the respective tra…
A conceptual framework for the neurobiological study of resilience.
AbstractThe well-replicated observation that many people maintain mental health despite exposure to severe psychological or physical adversity has ignited interest in the mechanisms that protect against stress-related mental illness. Focusing on resilience rather than pathophysiology in many ways represents a paradigm shift in clinical-psychological and psychiatric research that has great potential for the development of new prevention and treatment strategies. More recently, research into resilience also arrived in the neurobiological community, posing nontrivial questions about ecological validity and translatability. Drawing on concepts and findings from transdiagnostic psychiatry, emoti…
The stressed cytoskeleton: How actin dynamics can shape stress-related consequences on synaptic plasticity and complex behavior
Stress alters synaptic plasticity but the molecular and cellular mechanisms through which environmental stimuli modulate synaptic function remain to be elucidated. Actin filaments are the major structural component of synapses and their rearrangements by actin-binding proteins (ABPs) are critical for fine-tuning synaptic plasticity. Accumulating evidence suggests that some ABPs are specifically regulated by stress and stress-related effectors such as glucocorticoids and corticotropin releasing hormone. ABPs may thus be central in stress-induced perturbations at the level of synaptic plasticity, leading to impairments in behavioral domains including cognitive performance and social behavior.…
Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK)
Delayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapid-acting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as an animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK's rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomics app…
In search for predictive biomarkers: dissecting the molecular pathways in brain and blood underlying poor and good antidepressant treatment response
Major depression poses a serious social and economic threat to modern societies, as it accounts for more lost productivity compared with any other disorder. There are currently two major problems calling for innovative research approaches: 1. The absence of biomarkers predicting antidepressant response and 2. The lack of conceptually novel antidepressant compounds. Identification of biomarkers could allow patient stratification and enable the selection of pathophysiologically distinct patient subgroups to allow optimized treatment choices based on biology. In search for conceptually novel antidepressants, the hippocampal dentate gyrus is a region of particular interest, as there is a large …
IntelliPy: a GUI for analyzing IntelliCage data
Abstract Summary The IntelliCage systems offer the possibility to conduct long-term behavioral experiments on mice in social groups without human intervention. Although this setup provides new findings, only about 150 studies with the IntelliCage system have been published in the last two decades, which is also caused by the challenging problems of processing and handling the large and heterogeneous amounts of captured data. This application note introduces the Python-GUI IntelliPy, especially designed for users not very experienced in using programming languages. IntelliPy allows users to quickly analyze the IntelliCage output in a user-friendly way, thus making the systems more accessible…
Decoding the Mechanism of Action of Rapid-Acting Antidepressant Treatment Strategies: Does Gender Matter?
Gender differences play a pivotal role in the pathophysiology and treatment of major depressive disorder. This is strongly supported by a mean 2:1 female-male ratio of depression consistently observed throughout studies in developed nations. Considering the urgent need to tailor individualized treatment strategies to fight depression more efficiently, a more precise understanding of gender-specific aspects in the pathophysiology and treatment of depressive disorders is fundamental. However, current treatment guidelines almost entirely neglect gender as a potentially relevant factor. Similarly, the vast majority of animal experiments analysing antidepressant treatment in rodent models exclus…
Advancing empirical resilience research.
AbstractWe are delighted by the broad, intense, and fruitful discussion in reaction to our target article. A major point we take from the many comments is a prevailing feeling in the research community that we need significantly and urgently to advance resilience research, both by sharpening concepts and theories and by conducting empirical studies at a much larger scale and with a much more extended and sophisticated methodological arsenal than is the case currently. This advancement can be achieved only in a concerted international collaborative effort. In our response, we try to argue that an explicitly atheoretical, purely observational definition of resilience and a transdiagnostic, qu…
Rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK) targets glucocorticoid receptor signaling: a longitudinal cerebrospinal fluid proteome study
AbstractDelayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapidacting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as a animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK’s rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomi…
A Polymorphism in the Crhr1 Gene Determines Stress Vulnerability in Male Mice
Chronic stress is a risk factor for psychiatric disorders but does not necessarily lead to uniform long-term effects on mental health, suggesting modulating factors such as genetic predispositions. Here we address the question whether natural genetic variations in the mouse CRH receptor 1 (Crhr1) locus modulate the effects of adolescent chronic social stress (ACSS) on long-term stress hormone dysregulation in outbred CD1 mice, which allows a better understanding of the currently reported genes × environment interactions of early trauma and CRHR1 in humans. We identified 2 main haplotype variants in the mouse Crhr1 locus that modulate the long-term effects of ACSS on basal hypothalamic-pitui…
Early life stress programming of NG2+ glia transcriptome alters functional properties of voltage gated sodium (Nav) channels and cognitive performance
AbstractThe precise mechanisms underlying the detrimental effects of early life stress (ELS) on adult mental health remain still elusive. To date, most studies have exclusively targeted neuronal populations and not considered neuron-glia crosstalk as a crucially important element for the integrity of stress-related brain function. Here, we have investigated the impact of ELS on a glial subpopulation with unique properties in brain homeostasis, the NG2+ cells. ELS shifted the NG2+ transcriptome towards more mature stages, and these transcriptional effects were dependent on stress-induced glucocorticoids. The functional relevance of one candidate gene, Scn7a, could be confirmed by an increase…
Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity.
Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatmen…
The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics.
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in trans…