0000000000068640
AUTHOR
Fabrice Delbary
A generalized Newton iteration for computing the solution of the inverse Henderson problem
We develop a generalized Newton scheme IHNC for the construction of effective pair potentials for systems of interacting point-like particles.The construction is made in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator. In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step, and no further expensive cross-correlations. Numerical experiments…
Compartmental analysis of dynamic nuclear medicine data: Models and identifiability
Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how non-linear regularization schemes can be applied t…