Compressive single-pixel multispectral Stokes polarimeter
We present a single-pixel system that performs polarimetric multispectral imaging with the aid of compressive sensing techniques. We experimentally obtain the full Stokes spatial distribution of a scene for different spectral channels.
Transillumination imaging through biological tissue by single-pixel detection
One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection…
Imaging through scattering media by microstructured illumination
We describe a method to image objects through scattering media based on microstructured illumination. A spatial light modulator is used to project a set of microstructured light patterns onto the sample. The image is retrieved computationally from the photocurrent fluctuations provided by a detector with no spatial structure. We review several optical setups developed in the last years with different illumination strategies and applied to different turbid media. In particular we introduce a new non-invasive optical system based on a reflection configuration. Our technique does not require coherent light, raster scanning, time-gated detection or a-priori calibration processes. Furthermore it…
Image transmission through dynamic scattering media by single-pixel photodetection
Smart control of light propagation through highly scattering media is a much desired goal with major technological implications. Since interaction of light with highly scattering media results in partial or complete depletion of ballistic photons, it is in principle impossible to transmit images through distances longer than the extinction length. Nevertheless, different methods for image transmission, focusing, and imaging through scattering media by means of wavefront control have been published over the past few years. In this paper we show that single-pixel optical systems, based on compressive detection, can also overcome the fundamental limitation imposed by multiple scattering to suc…
Compressive imaging in scattering media.
One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection…
Computational imaging with single-pixel detection: Applications in scattering media
We describe computational imaging techniques based on single-pixel detection providing multidimensional information of an input scene. The key element of the optical recording stage is a spatial light modulator which sequentially generates a set of intensity light patterns to sample the scene. In this way, it is possible to use single-pixel detectors to measure different optical parameters such as the light intensity, the spectral content, the polarization state, or the phase. The spatial distribution of these parameters is then computed by applying the theory of compressive sampling. In particular, in this contribution we present a new method to transmit images through scattering media. We…
Use of balanced detection in single-pixel imaging
We introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel architecture. With this novel detection scheme we are able to recover a real-time video stream in presence of ambient light.
Computational imaging with a balanced detector
Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the sys…