0000000000068973

AUTHOR

C. Tanasi

showing 2 related works from this author

Equivariant, Almost-Arborescent Representations of Open simply-Connected 3-Manifolds; A Finiteness result

2004

When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy 3-spheres [Po3] to open simply connected 3-manifolds V 3,new phenomena appear: at the source of the representation, the set of double points is, generally speaking, no longer closed. We show that at the cost of replacing V3 by Vh3 = {V3 with very many holes }, we can always find representations X2 →f V3 with X2 locally finite and almost-arborescent, with Ψ (f) = Φ(f), with the open regular neighbourhood (the only one which is well-defined here) Nbd(f X2) = Vh3 and such that on any precompact tight transversal to the set of double lines, we have only FINITELY many limit points (of the set of double poi…

finitely generatedApplied MathematicsGeneral MathematicsGroupThompson's group
researchProduct

k-Weakly almost convex groups and ? 1 ? $$\tilde M^3 $$

1993

We extend Cannon's notion ofk-almost convex groups which requires that for two pointsx, y on then-sphere in the Cayley graph which can be joined by a pathl1 of length ≤k, there is a second pathl2 in then-ball, joiningx andy, of bounded length ≤N(k). Ourk-weakly almost convexity relaxes this condition by requiring only thatl1 ∝l2 bounds a disk of area ≤C1(k)n1 - e(k) +C2(k). IfM3 is a closed 3-manifold with 3-weakly almost convex fundamental group, then π1∞\(\tilde M^3 = 0\).

CombinatoricsFundamental groupCayley graphDifferential geometryHyperbolic geometryBounded functionRegular polygonGeometry and TopologyAlgebraic geometryConvexityMathematicsGeometriae Dedicata
researchProduct