0000000000069013
AUTHOR
Dan E. Browne
Physical model for the generation of ideal resources in multipartite quantum networking
We propose a physical model for generating multipartite entangled states of spin-$s$ particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies on the management of stationary and well separated spins. Among the generable states, there is a class of $N$-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.
Quasideterministic realization of a universal quantum gate in a single scattering process
We show that a flying particle, such as an electron or a photon, scattering along a one-dimensional waveguide from a pair of static spin-1/2 centers, such as quantum dots, can implement a CZ gate (universal for quantum computation) between them. This occurs quasi-deterministically in a single scattering event, hence with no need for any post-selection or iteration, {and} without demanding the flying particle to bear any internal spin. We show that an easily matched hard-wall boundary condition along with the elastic nature of the process are key to such performances.