0000000000069017

AUTHOR

Dimitrios Giannios

showing 17 related works from this author

Numerical study of emission and dynamics from a TDE-powered jet

2012

A transient event Swift J1644+57 is thought to be caused by the emission from a collimated relativistic jet. The jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star, collides with the gaseous circumnuclear medium and produces forward and reverse shocks which emit synchrotron radiation. We perform 1D and 2D relativistic hydrodynamic simulations using the MRGENESIS code. The aim of the simulations is to study the dynamics of a jet thought to exist in transient events such as Swift J1644+57, as discussed in recent literature. We discuss 1D and 2D jet evolution, on-axis radio light curves and differences between 1D and 2D jet dyn…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve7. Clean energy01 natural sciencesCollimated light13. Climate action0103 physical sciencesTransient (oscillation)010306 general physics010303 astronomy & astrophysicsEvent (particle physics)Astrophysics::Galaxy AstrophysicsEPJ Web of Conferences, 39, id.04003 (2012)
researchProduct

Radio afterglow of the jetted tidal disruption event Swift J1644+57

2012

The recent transient event Swift J1644+57 has been interpreted as resulting from a relativistic outflow, powered by the accretion of a tidally disrupted star onto a supermassive black hole. This discovery of a new class of relativistic transients opens new windows into the study of tidal disruption events (TDEs) and offers a unique probe of the physics of relativistic jet formation and the conditions in the centers of distant quiescent galaxies. Unlike the rapidly-varying γ/X-ray emission from Swift J1644+57, the radio emission varies more slowly and is well modeled as synchrotron radiation from the shock interaction between the jet and the gaseous circumnuclear medium (CNM). Early after th…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveGalaxyAfterglowTidal disruption eventAstrophysical jetAstrophysics::Galaxy AstrophysicsEPJ Web of Conferences
researchProduct

An RMHD study of transition between prompt and afterglow GRB phases

2008

We study the afterglow phases of a GRB through relativistic magnetohydrodynamic simulations. The evolution of a relativistic shell propagating into a homogeneous external medium is followed. We focus on the effect of the magnetization of the ejecta on the initial phases of the ejecta-external medium interaction. In particular we are studying the condition for the existence of a reverse shock into the ejecta, the timescale for the transfer of the energy from the shell to the shocked medium and the resulting multiwavelength light curves. To this end, we have developed a novel scheme to include non-thermal processeses which is coupled to the relativistic magnetohydrodynamic code MRGENESIS in o…

PhysicsShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Shell (structure)Synchrotron radiationFOS: Physical sciencesAstrophysicsLight curveAstrophysicsAfterglowMagnetohydrodynamic driveGamma-ray burstEjectaAstrophysics::Galaxy Astrophysics
researchProduct

The influence of circumnuclear environment on the radio emission from TDE jets

2016

Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavorable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear med…

AstrofísicaStellar populationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energylaw.inventionLuminositylaw0103 physical sciences010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Star formationAstronomyAstronomy and AstrophysicsRadiusLight curveSynchrotronWavelength13. Climate actionSpace and Planetary ScienceAstronomiaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Modelling accretion disc and stellar wind interactions: the case of Sgr A*

2016

Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural scienceslaw.inventionGravitationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeNumber densityBremsstrahlungAstronomyAstronomy and AstrophysicsAccretion (astrophysics)Stars13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHeliosphereFlareMonthly Notices of the Royal Astronomical Society
researchProduct

Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

2008

(Abridged) We aim to quantitatively understand the dynamical effect and observational signatures of magnetization of the GRB ejecta on the onset of the afterglow. We perform ultrahigh-resolution one-dimensional relativistic MHD simulations of the interaction of a radially expanding, magnetized ejecta with the interstellar medium. The need of ultrahigh numerical resolution derives from the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the evolution of an ultrarelativistic shell all the way to a the self-similar asymptotic phase. Our simulations show that the complete evolution can be characterized in terms of two parameters, name…

Magnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAShock wavesMagnetizationsymbols.namesakeGamma rays : bursts; Methods : numerical; Magnetohydrodynamics (MHD); Shock wavesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasEjectaAstrophysics::Galaxy AstrophysicsPhysicsnumerical [Methods]Magnetic energyAstrophysics (astro-ph)Astronomy and AstrophysicsAfterglowInterstellar mediumLorentz factorbursts [Gamma rays]Space and Planetary SciencesymbolsMagnetohydrodynamicsGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Multiwavelength afterglow light curves from magnetized gamma-ray burst flows

2010

We use high-resolution relativistic magnetohydrodynamics simulations coupled with a radiative transfer code to compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. The aim of our study is to determine how the magnetization of the ejecta at large distance from the central engine influences the afterglow emission, and to assess whether observations can be reliably used to infer the strength of the magnetic field. We find that, for typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization (σ 0 ~ 0.01-0.1 of the flow, and that it is greatly suppressed for higher σ 0 . The emissi…

Shock wavePhysicsMagnetic energyAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveAfterglowLuminositySpace and Planetary ScienceRadiative transferEjectaGamma-ray burstAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Gamma-ray burst afterglow light curves from realistic density profiles

2011

The afterglow emission that follows gamma-ray bursts (GRBs) contains valuable information about the circumburst medium and, therefore, about the GRB progenitor. Theoretical studies of GRB blast waves, however, are often limited to simple density profiles for the external medium (mostly constant density and power-law R^{-k} ones). We argue that a large fraction of long-duration GRBs should take place in massive stellar clusters where the circumburst medium is much more complicated. As a case study, we simulate the propagation of a GRB blast wave in a medium shaped by the collision of the winds of O and Wolf-Rayet stars, the typical distance of which is d /sim 0.1 - 1 pc. Assuming a spherical…

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaCompton scatteringAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowlaw.inventionStarsSpace and Planetary Sciencelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsGamma-ray burst010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsBlast waveFermi Gamma-ray Space TelescopeFlareMonthly Notices of the Royal Astronomical Society
researchProduct

On the existence of a reverse shock in magnetized gamma-ray burst ejecta

2007

The role of magnetic fields in gamma-ray burst (GRB) flows remains controversial. The study of the early afterglow phases and, in particular, of the reverse shock dynamics and associated emission offers a promising probe of the magnetization of the ejecta. In this paper, we derive the conditions for the existence of a reverse shock in arbitrarily magnetized ejecta that decelerate and interact with the circumburst medium. Both constant and wind-like density profiles are considered. We show, in contrast to previous estimates, that ejecta with magnetization σ0 >∼ 1 are not crossed by a reverse shock for a large fraction of the parameter space relevant to GRB flows. Allowing for shell spreading…

PhysicsMagnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysicsParameter spaceUNESCO::ASTRONOMÍA Y ASTROFÍSICAShock (mechanics)Magnetic fieldAfterglowShock wavesMagnetizationGamma rays : bursts; Magnetohydrodynamics (MHD); Shock wavesbursts [Gamma rays]Space and Planetary ScienceUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasEjectaGamma-ray burstAstrophysics::Galaxy Astrophysics:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Numerical simulations of the jetted tidal disruption event Swift J1644+57

2016

In this work we focus on the technical details of the numerical simulations of the non- thermal transient Swift J1644+57, whose emission is probably produced by a two-component jet powered by a tidal disruption event. In this context we provide details of the coupling between the relativistic hydrodynamic simulations and the radiative transfer code. First, we consider the technical demands of one-dimensional simulations of a fast relativistic jet, and show to what extent (for the same physical parameters of the model) do the computed light curves depend on the numerical parameters of the different codes employed. In the second part we explain the difficulties of computing light curves from …

PhysicsCouplingHigh Energy Astrophysical Phenomena (astro-ph.HE)AstrofísicaHistoryJet (fluid)010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesContext (language use)MechanicsLight curve01 natural sciencesComputer Science ApplicationsEducationTidal disruption event13. Climate action0103 physical sciencesRadiative transferAstronomiaTransient (oscillation)Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciences
researchProduct

Radio Emission from Sgr A*: Pulsar Transits Through the Accretion Disc

2017

Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesElectronAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesBinary pulsarsymbols.namesakePulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySupermassive black holeAstronomyAstronomy and AstrophysicsAccretion (astrophysics)GalaxyLorentz factorSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Afterglow light curves from magnetized GRB flows

2010

AbstractUsing the RMHD code MRGENESIS and the radiative transfer code SPEV we compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. We are interested in the emission from the reverse shock when ejecta magnetization varies from σ0 = 0 to σ0 = 1. For typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization σ0 ~ 0.01 − 0.1, and is suppressed for higher σ0. We fit the early afterglow light curves of GRB 990123 and 090102 and discuss the possible magnetization of the outflows of these bursts. Finally we discuss the amount energy left in the magnetic field which is available for d…

PhysicsShock waveMagnetizationSpace and Planetary ScienceRadiative transferAstronomy and AstrophysicsAstrophysicsLight curveGamma-ray burstEjectaMagnetic fieldAfterglowProceedings of the International Astronomical Union
researchProduct

The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

2015

We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally-disrupted star onto a super-massive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio rebrightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behavior by means of multi-dimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Supermassive black holeAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLight curveAfterglowLorentz factorsymbols.namesakeAstrophysical jetSpace and Planetary SciencesymbolsRadiative transferAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

SIMULATIONS OF DYNAMICS AND EMISSION FROM MAGNETIZED GRB AFTERGLOWS

2010

The role of magnetic fields in the GRB flow is still controversial. The afterglow emission, particularly the early phases, may provide a probe into the magnetization of the outflow. Using ultrahigh resolution relativistic MHD simulations, the interaction between radially expanding magnetized ejecta with the interstellar medium is studied. We explore the effect of the magnetic field strength of the ejecta on the afterglow structure, particularly regarding the presence and strength of a reverse shock. We compute synthetic afterglow light curves to quantify the effect of the magnetization of the flow on observed radiation.

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveAfterglowMagnetic fieldInterstellar mediumMagnetizationSpace and Planetary ScienceMagnetohydrodynamicsGamma-ray burstEjectaAstrophysics::Galaxy AstrophysicsMathematical PhysicsInternational Journal of Modern Physics D
researchProduct

Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57

2012

The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve o…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSynchrotron radiationFluxAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowLorentz factorsymbols.namesake13. Climate actionSpace and Planetary Science0103 physical sciencessymbols010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Afterglow Model for the Radio Emission from the Jetted Tidal Disruption Candidate Swift J1644+57

2011

The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve o…

High Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

GRB afterglow light curves from realistic density profiles

2011

The afterglow emission that follows gamma-ray bursts (GRBs) contains valuable information about the circumburst medium and, therefore, about the GRB progenitor. Theoretical studies of GRB blast waves, however, are often limited to simple density profiles for the external medium (mostly constant density and power-law R^{-k} ones). We argue that a large fraction of long-duration GRBs should take place in massive stellar clusters where the circumburst medium is much more complicated. As a case study, we simulate the propagation of a GRB blast wave in a medium shaped by the collision of the winds of O and Wolf-Rayet stars, the typical distance of which is d /sim 0.1 - 1 pc. Assuming a spherical…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct