0000000000069018

AUTHOR

Petar Mimica

showing 50 related works from this author

Numerical study of emission and dynamics from a TDE-powered jet

2012

A transient event Swift J1644+57 is thought to be caused by the emission from a collimated relativistic jet. The jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star, collides with the gaseous circumnuclear medium and produces forward and reverse shocks which emit synchrotron radiation. We perform 1D and 2D relativistic hydrodynamic simulations using the MRGENESIS code. The aim of the simulations is to study the dynamics of a jet thought to exist in transient events such as Swift J1644+57, as discussed in recent literature. We discuss 1D and 2D jet evolution, on-axis radio light curves and differences between 1D and 2D jet dyn…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve7. Clean energy01 natural sciencesCollimated light13. Climate action0103 physical sciencesTransient (oscillation)010306 general physics010303 astronomy & astrophysicsEvent (particle physics)Astrophysics::Galaxy AstrophysicsEPJ Web of Conferences, 39, id.04003 (2012)
researchProduct

Which physical parameters can be inferred from the emission variability of relativistic jets?

2005

We present results of a detailed numerical study and theoretical analysis of the dynamics of internal shocks in relativistic jets and the non-thermal flares associated with these shocks. In our model internal shocks result from collisions of density inhomogeneities (shells) in relativistic jet flows. We find that the merged shell resulting from the inelastic collision of shells has a complicated internal structure due to the non-linear dynamics of the interaction. Furthermore, the instantaneous efficiency for converting kinetic energy into thermal energy is found to be almost twice as high as theoretically expected during the period of significant emission. The Lorentz factors of the intern…

PhysicsJet (fluid)Inertial frame of referencebusiness.industryLorentz transformationAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Inelastic collisionShell (structure)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsKinetic energyAstrophysicsComputational physicssymbols.namesakeAstrophysical jetSpace and Planetary SciencesymbolsbusinessThermal energy
researchProduct

On the dynamic efficiency of internal shocks in magnetized relativistic outflows

2009

We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization $\sigma\simeq 0.1$), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Thus, the dynamic efficiency…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Magnetic energyShock (fluid dynamics)Equation of state (cosmology)Astrophysics::High Energy Astrophysical PhenomenaRelative velocityEnergy fluxRarefactionFOS: Physical sciencesAstronomy and AstrophysicsPlasmaComputational physicsLorentz factorsymbols.namesakeSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

3D MHD modeling of the expanding remnant of SN 1987A : role of magnetic field and non-thermal radio emission

2018

Aims. We investigate the role played by a pre-supernova (SN) ambient magnetic field on the dynamics of the expanding remnant of SN 1987A and the origin and evolution of the radio emission from the remnant, in particular, during the interaction of the blast wave with the nebula surrounding the SN. Methods. We model the evolution of SN 1987A from the breakout of the shock wave at the stellar surface to the expansion of its remnant through the surrounding nebula by 3D MHD simulations. The model considers the radiative cooling, the deviations from equilibrium of ionization, the deviation from temperature-equilibration between electrons and ions, and a plausible configuration of the pre-SN ambie…

Shock waveH II regionMagnetohydrodynamics (MHD)shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthISM [radio continuum]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Radio spectrumindividual: SN 1987A [supernovae]0103 physical sciencesISM [X-rays]010303 astronomy & astrophysicsBlast waveISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nebulasupernovae: individual: SN 1987A010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and Astrophysicsshock wavesX-rays: ISMMagnetic fieldradio continuum: ISMSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Radio afterglow of the jetted tidal disruption event Swift J1644+57

2012

The recent transient event Swift J1644+57 has been interpreted as resulting from a relativistic outflow, powered by the accretion of a tidally disrupted star onto a supermassive black hole. This discovery of a new class of relativistic transients opens new windows into the study of tidal disruption events (TDEs) and offers a unique probe of the physics of relativistic jet formation and the conditions in the centers of distant quiescent galaxies. Unlike the rapidly-varying γ/X-ray emission from Swift J1644+57, the radio emission varies more slowly and is well modeled as synchrotron radiation from the shock interaction between the jet and the gaseous circumnuclear medium (CNM). Early after th…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveGalaxyAfterglowTidal disruption eventAstrophysical jetAstrophysics::Galaxy AstrophysicsEPJ Web of Conferences
researchProduct

An RMHD study of transition between prompt and afterglow GRB phases

2008

We study the afterglow phases of a GRB through relativistic magnetohydrodynamic simulations. The evolution of a relativistic shell propagating into a homogeneous external medium is followed. We focus on the effect of the magnetization of the ejecta on the initial phases of the ejecta-external medium interaction. In particular we are studying the condition for the existence of a reverse shock into the ejecta, the timescale for the transfer of the energy from the shell to the shocked medium and the resulting multiwavelength light curves. To this end, we have developed a novel scheme to include non-thermal processeses which is coupled to the relativistic magnetohydrodynamic code MRGENESIS in o…

PhysicsShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Shell (structure)Synchrotron radiationFOS: Physical sciencesAstrophysicsLight curveAstrophysicsAfterglowMagnetohydrodynamic driveGamma-ray burstEjectaAstrophysics::Galaxy Astrophysics
researchProduct

Dynamical efficiency of collisionless magnetized shocks in relativistic jets

2010

The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to- thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the co…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsShock waveShock (fluid dynamics)Magnetic energyAstrophysics::High Energy Astrophysical PhenomenaRelative velocityFOS: Physical sciencesRarefaction020206 networking & telecommunications02 engineering and technologyKinetic energyComputational physicsAstrophysical jet0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAstrophysics - High Energy Astrophysical PhenomenaBlazarAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

The influence of circumnuclear environment on the radio emission from TDE jets

2016

Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavorable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear med…

AstrofísicaStellar populationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energylaw.inventionLuminositylaw0103 physical sciences010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Star formationAstronomyAstronomy and AstrophysicsRadiusLight curveSynchrotronWavelength13. Climate actionSpace and Planetary ScienceAstronomiaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Internal shocks in relativistic outflows: collisions of magnetized shells

2007

(Abridged): We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the influence of the magnetic field on the collision dynamics, and we further investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the externa…

Magnetohydrodynamics (MHD)Lorentz transformationAstrophysics::High Energy Astrophysical PhenomenaNon-thermalFOS: Physical sciencesAstrophysicsAstrophysicsKinetic energyUNESCO::ASTRONOMÍA Y ASTROFÍSICAMagnetohydrodynamics (MHD) ; Radiation mechanisms ; Non-thermal ; galaxies ; Jets ; BL Lacertae objects ; X-rayssymbols.namesakeMagnetizationgalaxiesJetsX-raysRadiation mechanismsPhysicsMagnetic energyInternal energybusiness.industryAstrophysics (astro-ph)Astronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Computational physicsMagnetic fieldSpace and Planetary SciencesymbolsBL Lacertae objectsMagnetohydrodynamicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniabusinessThermal energy:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Modelling accretion disc and stellar wind interactions: the case of Sgr A*

2016

Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural scienceslaw.inventionGravitationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeNumber densityBremsstrahlungAstronomyAstronomy and AstrophysicsAccretion (astrophysics)Stars13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHeliosphereFlareMonthly Notices of the Royal Astronomical Society
researchProduct

Numerical models of blackbody-dominated gamma-ray bursts -- II. Emission properties

2014

Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by long durations and the presence of a significant thermal component following the prompt emission, as well as by the absence of a typical afterglow. GRB 101225A is the most prominent member of this class. A plausible progenitor system for it and for BBD-GRBs is the merger a neutron star and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In a previous paper we showed that the thermal emission in BBD-GRBs is linked to the interaction of an ultrarelativistic jet with the ejected …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLight curve01 natural sciences3. Good healthAfterglowShock (mechanics)Neutron starSpace and Planetary Science0103 physical sciencesRadiative transferGamma-ray burstEjectaAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

2008

(Abridged) We aim to quantitatively understand the dynamical effect and observational signatures of magnetization of the GRB ejecta on the onset of the afterglow. We perform ultrahigh-resolution one-dimensional relativistic MHD simulations of the interaction of a radially expanding, magnetized ejecta with the interstellar medium. The need of ultrahigh numerical resolution derives from the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the evolution of an ultrarelativistic shell all the way to a the self-similar asymptotic phase. Our simulations show that the complete evolution can be characterized in terms of two parameters, name…

Magnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAShock wavesMagnetizationsymbols.namesakeGamma rays : bursts; Methods : numerical; Magnetohydrodynamics (MHD); Shock wavesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasEjectaAstrophysics::Galaxy AstrophysicsPhysicsnumerical [Methods]Magnetic energyAstrophysics (astro-ph)Astronomy and AstrophysicsAfterglowInterstellar mediumLorentz factorbursts [Gamma rays]Space and Planetary SciencesymbolsMagnetohydrodynamicsGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Relativistic Magnetohydrodynamics: Renormalized eigenvectors and full wave decomposition Riemann solver

2010

We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Degenerate energy levelsFOS: Physical sciencesAstronomy and AstrophysicsSolverRest frameRiemann solverRenormalizationsymbols.namesakeTransformation matrixSpace and Planetary SciencesymbolsApplied mathematicsDegeneracy (mathematics)Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaInstrumentation and Methods for Astrophysics (astro-ph.IM)Eigenvalues and eigenvectorsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Multiwavelength afterglow light curves from magnetized gamma-ray burst flows

2010

We use high-resolution relativistic magnetohydrodynamics simulations coupled with a radiative transfer code to compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. The aim of our study is to determine how the magnetization of the ejecta at large distance from the central engine influences the afterglow emission, and to assess whether observations can be reliably used to infer the strength of the magnetic field. We find that, for typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization (σ 0 ~ 0.01-0.1 of the flow, and that it is greatly suppressed for higher σ 0 . The emissi…

Shock wavePhysicsMagnetic energyAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveAfterglowLuminositySpace and Planetary ScienceRadiative transferEjectaGamma-ray burstAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Gamma-ray burst afterglow light curves from realistic density profiles

2011

The afterglow emission that follows gamma-ray bursts (GRBs) contains valuable information about the circumburst medium and, therefore, about the GRB progenitor. Theoretical studies of GRB blast waves, however, are often limited to simple density profiles for the external medium (mostly constant density and power-law R^{-k} ones). We argue that a large fraction of long-duration GRBs should take place in massive stellar clusters where the circumburst medium is much more complicated. As a case study, we simulate the propagation of a GRB blast wave in a medium shaped by the collision of the winds of O and Wolf-Rayet stars, the typical distance of which is d /sim 0.1 - 1 pc. Assuming a spherical…

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaCompton scatteringAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowlaw.inventionStarsSpace and Planetary Sciencelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsGamma-ray burst010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsBlast waveFermi Gamma-ray Space TelescopeFlareMonthly Notices of the Royal Astronomical Society
researchProduct

Numerical models of blackbody-dominated gamma-ray bursts – I. Hydrodynamics and the origin of the thermal emission

2014

GRB 101225A is a prototype of the class of blackbody-dominated (BBD) gamma-ray bursts (GRBs). It has been suggested that BBD-GRBs result from the merger of a binary system formed by a neutron star and the helium core of an evolved star. We have modelled the propagation of ultrarelativistic jets through the environment left behind the merger by means of relativistic hydrodynamic simulations. In this paper, the output of our numerical models is post-processed to obtain the (thermal) radiative signature of the resulting outflow. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of GRB 101225A…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowNeutron starCommon envelopeSpace and Planetary ScienceThermal radiation0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33

2011

Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae. They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical couuterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to…

PhysicsMultidisciplinaryAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveGalaxyCommon envelopeNeutron starSupernovaAstrophysics::Solar and Stellar AstrophysicsGamma-ray burstStellar evolutionAstrophysics::Galaxy AstrophysicsNature
researchProduct

Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

2013

The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the $\gamma$-ray band was performed, in order to identify the effects of the magnetic field.

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSpectral densityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line010305 fluids & plasmasMagnetic fieldMagnetizationAstrophysical jet0103 physical sciencesOutflowBlazarAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsFermi Gamma-ray Space Telescope
researchProduct

Spectral evolution of flaring blazars from numerical simulations

2016

High resolution Very Long Baseline Interferometry (VLBI) observations of Active Galactic Nuclei (AGN) revealed traveling and stationary or quasi-stationary radio-components in several blazar jets. The traveling ones are in general interpreted as shock waves generated by pressure perturbations injected at the jet nozzle. The stationary features can be interpreted as recollimation shocks in non-pressure matched jets if they show a quasi-symmetric bump in the spectral index distribution. In some jets there may be interactions between the two kinds of shocks. These shock--shock interactions are observable with VLBI techniques, and their signature should also be imprinted on the single--dish lig…

Shock waveAstrofísicaActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionlaw0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral indexJet (fluid)010308 nuclear & particles physicsHidrodinàmicaAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesShock (mechanics)13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)AstronomiaAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

On the existence of a reverse shock in magnetized gamma-ray burst ejecta

2007

The role of magnetic fields in gamma-ray burst (GRB) flows remains controversial. The study of the early afterglow phases and, in particular, of the reverse shock dynamics and associated emission offers a promising probe of the magnetization of the ejecta. In this paper, we derive the conditions for the existence of a reverse shock in arbitrarily magnetized ejecta that decelerate and interact with the circumburst medium. Both constant and wind-like density profiles are considered. We show, in contrast to previous estimates, that ejecta with magnetization σ0 >∼ 1 are not crossed by a reverse shock for a large fraction of the parameter space relevant to GRB flows. Allowing for shell spreading…

PhysicsMagnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysicsParameter spaceUNESCO::ASTRONOMÍA Y ASTROFÍSICAShock (mechanics)Magnetic fieldAfterglowShock wavesMagnetizationGamma rays : bursts; Magnetohydrodynamics (MHD); Shock wavesbursts [Gamma rays]Space and Planetary ScienceUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasEjectaGamma-ray burstAstrophysics::Galaxy Astrophysics:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Numerical simulations of the jetted tidal disruption event Swift J1644+57

2016

In this work we focus on the technical details of the numerical simulations of the non- thermal transient Swift J1644+57, whose emission is probably produced by a two-component jet powered by a tidal disruption event. In this context we provide details of the coupling between the relativistic hydrodynamic simulations and the radiative transfer code. First, we consider the technical demands of one-dimensional simulations of a fast relativistic jet, and show to what extent (for the same physical parameters of the model) do the computed light curves depend on the numerical parameters of the different codes employed. In the second part we explain the difficulties of computing light curves from …

PhysicsCouplingHigh Energy Astrophysical Phenomena (astro-ph.HE)AstrofísicaHistoryJet (fluid)010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesContext (language use)MechanicsLight curve01 natural sciencesComputer Science ApplicationsEducationTidal disruption event13. Climate action0103 physical sciencesRadiative transferAstronomiaTransient (oscillation)Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciences
researchProduct

Spectral evolution of superluminal components in parsec-scale jets

2008

27 pages, 18 figures, 1 table, 1 appendix.-- Pre-print archive.

PhotonRadiation mechanisms: non-thermalAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysicsRelativitysymbols.namesakeAstrophysical jetRadiative transfereducationPhysicseducation.field_of_studySpectral indexnon-thermal [Radiation mechanisms]Superluminal motionAstrophysics (astro-ph)Astronomy and AstrophysicsMagnetic fieldLorentz factorGalaxies: jetsSpace and Planetary ScienceHydrodynamicssymbolsjets [Galaxies]
researchProduct

A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants

2015

Abstract The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium…

PhysicsShock waveNuclear and High Energy PhysicsRadiationScatteringAstrophysics::High Energy Astrophysical PhenomenaInverseAstrophysicsElectronRadiation01 natural sciencesSynchrotronlaw.inventionSupernovalaw0103 physical sciences010306 general physicsAdiabatic process010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Density Physics
researchProduct

The influence of the magnetic field on the spectral properties of blazars

2013

We explore the signature imprinted by dynamically relevant magnetic fields on the spectral energy distribution (SED) of blazars. It is assumed that the emission from these sources originates from the collision of cold plasma shells, whose magnetohydrodynamic evolution we compute by numerically solving Riemann problems. We compute the SEDs including the most relevant radiative processes and scan a broad parameter space that encompasses a significant fraction of the commonly accepted values of not directly measurable physical properties. We reproduce the standard double hump SED found in blazar observations for unmagnetized shells, but show that the prototype double hump structure of blazars …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRedshiftMagnetic fieldMagnetizationSpace and Planetary ScienceRadiative transferSpectral energy distributionMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaBlazarMNRAS, 438, 1856 (2014).
researchProduct

Radio Emission from Sgr A*: Pulsar Transits Through the Accretion Disc

2017

Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesElectronAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesBinary pulsarsymbols.namesakePulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySupermassive black holeAstronomyAstronomy and AstrophysicsAccretion (astrophysics)GalaxyLorentz factorSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Effect of contact lenses on ocular biometric measurements based on swept-source optical coherence tomography

2019

ABSTRACT Purpose: To determine the reliability of swept- source optical coherence tomography in cases in which soft contact lenses cannot be removed when acquiring biometric measurements. Methods: Eight subjects were included and only one eye per participant was analyzed. Each eye was measured six times by swept-source optical coherence tomography with the IOLMaster 700 instrument (Carl Zeiss Meditec, Jena, Germany). Axial length, central corneal thickness, anterior chamber depth, lens thickness, and keratometric measurements were evaluated for the naked eye and while wearing soft contact lenses of three different powers (-1.5, -3.0, and +2.0 D). Results: There were statistically significan…

AdultBiometryMaterials sciencegenetic structuresContact LensesTomography optical coherenceStatistics Nonparametriclaw.invention03 medical and health sciences0302 clinical medicineOpticslcsh:OphthalmologyOptical coherence tomographyLens thicknessAnterior Eye SegmentReference ValueslawmedicineHumansContact lensesAnalysis of VarianceCross-Over Studiesmedicine.diagnostic_testbusiness.industryReproducibility of ResultsGeneral MedicineAxial lengtheye diseasesContact lensLens (optics)Axial Length EyeOphthalmologylcsh:RE1-994Reference values030221 ophthalmology & optometrysense organsTomographybusinessTomography Optical CoherenceArquivos Brasileiros de Oftalmologia
researchProduct

Numerical simulations of dynamics and emission from relativistic astrophysical jets

2013

Broadband emission from relativistic outflows (jets) of active galactic nuclei (AGN) and gamma-ray bursts (GRBs) contains valuable information about the nature of the jet itself, and about the central engine which launches it. Using special relativistic hydrodynamics and magnetohydronamics simulations we study the dynamics of the jet and its interaction with the surrounding medium. The observational signature of the simulated jets is computed using a radiative transfer code developed specifically for the purpose of computing multi-wavelength, time-dependent, non-thermal emission from astrophysical plasmas. We present results of a series of long-term projects devoted to understanding the dyn…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHistoryJet (fluid)Active galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaDynamics (mechanics)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsPlasmaAstrophysics01 natural sciences7. Clean energy010305 fluids & plasmasComputer Science ApplicationsEducationAfterglow13. Climate action0103 physical sciencesRadiative transferMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsJournal of Physics: Conference Series
researchProduct

Afterglow light curves from magnetized GRB flows

2010

AbstractUsing the RMHD code MRGENESIS and the radiative transfer code SPEV we compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. We are interested in the emission from the reverse shock when ejecta magnetization varies from σ0 = 0 to σ0 = 1. For typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization σ0 ~ 0.01 − 0.1, and is suppressed for higher σ0. We fit the early afterglow light curves of GRB 990123 and 090102 and discuss the possible magnetization of the outflows of these bursts. Finally we discuss the amount energy left in the magnetic field which is available for d…

PhysicsShock waveMagnetizationSpace and Planetary ScienceRadiative transferAstronomy and AstrophysicsAstrophysicsLight curveGamma-ray burstEjectaMagnetic fieldAfterglowProceedings of the International Astronomical Union
researchProduct

VLBI-selected sample of Compact Symmetric Object candidates and frequency-dependent position of hotspots

2011

The Compact Symmetric Objects (CSOs) are small (<1 kiloparsec) and powerful extragalactic radio sources showing emission on both sides of an active galactic nucleus and no signs of strong relativistic beaming. They may be young radio sources, progenitors of large FRII radio galaxies. We aim to study the statistical properties of CSOs by constructing and investigating a new large sample of CSO candidates on the basis of dual-frequency, parsec-scale morphology. For the candidate selection we utilized VLBI data for 4170 extragalactic objects obtained simultaneously at 2.3 and 8.6 GHz (S and X band) within the VLBA Calibrator Survey 1-6 and the Research and Development - VLBA projects. Prope…

PhysicsSpectral indexActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesRadio galaxyX bandFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRelativistic beamingSpace and Planetary ScienceBrightness temperature0103 physical sciencesVery-long-baseline interferometry010303 astronomy & astrophysics0105 earth and related environmental sciencesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger

2018

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…

010504 meteorology & atmospheric sciencesGeneral Science & TechnologyInfraredAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxy merger01 natural sciencesTidal disruption eventGravitational fieldMD Multidisciplinary0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCOREBLACK-HOLES010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Supermassive black holeta115Science & TechnologyMultidisciplinaryAstrophysics - Astrophysics of GalaxiesGalaxyMultidisciplinary SciencesWavelengthAstrophysics of Galaxies (astro-ph.GA)Science & Technology - Other TopicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEMISSIONSTARS
researchProduct

A Roe-type Riemann solver based on the spectral decomposition of the equations of Relativistic Magnetohydrodynamics

2010

In a recent paper (Ant\'on et al. 2010) we have derived sets of right and left eigenvectors of the Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. We present a summary of the main steps followed in the above derivation and the numerical experiments carried out with the linearized (Roe-type) Riemann solver we have developed, and some note on the (non-)convex character of the relativistic MHD equations.

High Energy Astrophysical Phenomena (astro-ph.HE)FOS: Physical sciencesMathematical Physics (math-ph)Astrophysics - High Energy Astrophysical PhenomenaMathematical Physics
researchProduct

Multi-wavelength mock observations of the WHIM in a simulated galaxy cluster

2018

About half of the expected total baryon budget in the local Universe is `missing'. Hydrodynamical simulations suggest that most of the missing baryons are located in a mildly overdense, warm-hot intergalactic medium (WHIM), which is difficult to be detected at most wavelengths. In this paper we explore multi-wavelength synthetic observations of a massive galaxy cluster developed in a full Eulerian-AMR cosmological simulation. A novel numerical procedure is applied on the outputs of the simulation, which are post-processed with a full-radiative transfer code that allows to compute the change of the intensity at any frequency along the null-geodesic of photons. We compare the emission from th…

PhysicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectFOS: Physical sciencesAstronomy and AstrophysicsKinematicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesUniverseBaryonWavelengthSpace and Planetary Science0103 physical sciencesThermalRange (statistics)010306 general physics010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysicsmedia_common
researchProduct

Spectral evolution simulation on leading multi-socket, multicore platforms

2011

Spectral evolution simulations based on the observed Very Long Baseline Interferometry (VLBI) radio-maps are of paramount importance to understand the nature of extragalactic objects in astrophysics. This work analyzes the performance and scaling of a spectral evolution algorithm on three leading multi-socket, multi-core architectures. We evaluate three parallel models with different levels of data-sharing: a sharing approach, a privatizing approach and a hybrid approach. Our experiments show that the data-privatizing model is reasonably efficient on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless algorithmic and scheduling optimizations, sharing approach is …

Instruction setMulti-core processorSpectral evolutionComputer scienceDistributed computingScalabilityVery-long-baseline interferometryScalingScheduling (computing)2011 18th International Conference on High Performance Computing
researchProduct

Simulation of Shock-Shock interaction in parsec-scale jets

2011

The analysis of the radio light curves of the blazar CTA102 during its 2006 flare revealed a possible interaction between a standing shock wave and a traveling one. In order to better understand this highly non-linear process, we used a relativistic hydrodynamic code to simulate the high energy interaction and its related emission. The calculated synchrotron emission from these simulations showed an increase in turnover flux density, $S_{m}$, and turnover frequency, $\nu_{m}$, during the interaction and decrease to its initial values after the passage of the traveling shock wave.

PhysicsShock waveHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLight curve01 natural scienceslaw.inventionShock (mechanics)Computational physicsCTA-102ParsecAstrophysical jetlaw0103 physical sciencesBlazarAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesFlareAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

2015

We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally-disrupted star onto a super-massive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio rebrightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behavior by means of multi-dimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Supermassive black holeAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLight curveAfterglowLorentz factorsymbols.namesakeAstrophysical jetSpace and Planetary SciencesymbolsRadiative transferAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Numerical simulations of the internal shock model in magnetized relativistic jets of blazars

2015

The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculatio…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaRelative velocitySpectral densityFOS: Physical sciencesViewing angleComputational physicsMagnetic fieldMagnetizationLorentz factorsymbols.namesakeAstrophysical jetsymbolsAstrophysics - High Energy Astrophysical PhenomenaBlazar
researchProduct

EFFICIENCY OF INTERNAL SHOCKS IN MAGNETIZED RELATIVISTIC JETS

2011

We study the dynamic and radiative efficiency of conversion of kinetic-to-thermal/magnetic energy by internal shocks in relativistic magnetized outflows. A parameter study of a large number of collisions of cylindrical shells is performed. We explore how, while keeping the total flow luminosity constant, the variable fluid magnetization influences the efficiency and find that the interaction of shells in a mildly magnetized jet yields higher dynamic, but lower radiative efficiency than in a non-magnetized flow. A multi-wavelength radiative signature of different shell magnetization is computed assuming that relativistic particles are accelerated at internal shocks.

High Energy Astrophysical Phenomena (astro-ph.HE)Shock wavePhysicsJet (fluid)Luminosity (scattering theory)010504 meteorology & atmospheric sciencesMagnetic energyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciencesRelativistic particleComputational physicsMagnetizationAstrophysical jet0103 physical sciencesRadiative transferAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesInternational Journal of Modern Physics: Conference Series
researchProduct

Numerical Models of Blackbody-Dominated GRBs

2015

Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by the absence of a typical afterglow, long durations and the presence of a significant thermal component following the prompt gamma-ray emission. GRB 101225A (the `Christmas burst') is a prototype of this class. A plausible progenitor system for it, and for the BBD-GRBs, is the merger of a neutron star (NS) and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of an ultrarelativistic jet through the enviroment created by such a merger and we compute the whole radiative signature, both thermal and non-thermal, of the jet dynamical evolution. We find that t…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBlack-body radiationAstrophysicsNumerical modelsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical Phenomena7. Clean energyAstrophysics::Galaxy Astrophysics
researchProduct

VLBI-resolution radio-map algorithms: Performance analysis of different levels of data-sharing on multi-socket, multi-core architectures

2012

a b s t r a c t A broad area in astronomy focuses on simulating extragalactic objects based on Very Long Baseline Interferometry (VLBI) radio-maps. Several algorithms in this scope simulate what would be the observed radio-maps if emitted from a predefined extragalactic object. This work analyzes the performance and scaling of this kind of algorithms on multi-socket, multi-core architectures. In particular, we evaluate a sharing approach, a privatizing approach and a hybrid approach on systems with complex memory hierarchy that includes shared Last Level Cache (LLC). In addition, we investigate which manual processes can be systematized and then automated in future works. The experiments sh…

Multi-core processorMemory hierarchy010308 nuclear & particles physicsComputer scienceGeneral Physics and AstronomyParallel computing01 natural sciencesScheduling (computing)Data sharingComputer engineeringHardware and Architecture0103 physical sciencesVery-long-baseline interferometryScalabilityCache010303 astronomy & astrophysicsScalingComputer Physics Communications, CPC, 1937-1946 (2012)
researchProduct

SIMULATIONS OF DYNAMICS AND EMISSION FROM MAGNETIZED GRB AFTERGLOWS

2010

The role of magnetic fields in the GRB flow is still controversial. The afterglow emission, particularly the early phases, may provide a probe into the magnetization of the outflow. Using ultrahigh resolution relativistic MHD simulations, the interaction between radially expanding magnetized ejecta with the interstellar medium is studied. We explore the effect of the magnetic field strength of the ejecta on the afterglow structure, particularly regarding the presence and strength of a reverse shock. We compute synthetic afterglow light curves to quantify the effect of the magnetization of the flow on observed radiation.

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveAfterglowMagnetic fieldInterstellar mediumMagnetizationSpace and Planetary ScienceMagnetohydrodynamicsGamma-ray burstEjectaAstrophysics::Galaxy AstrophysicsMathematical PhysicsInternational Journal of Modern Physics D
researchProduct

Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57

2012

The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve o…

PhysicsJet (fluid)Supermassive black holeAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSynchrotron radiationFluxAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowLorentz factorsymbols.namesake13. Climate actionSpace and Planetary Science0103 physical sciencessymbols010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Radiative signature of magnetic fields in internal shocks

2012

Common models of blazars and gamma-ray bursts assume that the plasma underlying the ob- served phenomenology is magnetized to some extent. Within this context, radiative signatures of dissipation of kinetic and conversion of magnetic energy in internal shocks of relativistic magnetized outflows are studied. We model internal shocks as being caused by collisions of homogeneous plasma shells. We compute the flow state after the shell interaction by solving Riemann problems at the contact surface between the colliding shells, and then compute the emission from the resulting shocks. Under the assumption of a constant flow luminosity we find that there is a clear difference between the models wh…

PhysicsMagnetic energySpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaRadiative transferAstronomy and AstrophysicsContext (language use)AstrophysicsBlazarLight curveKinetic energyMagnetic fieldLuminosityMonthly Notices of the Royal Astronomical Society
researchProduct

Reconstruction of an Accretion Disk Image in AU Mon from CoRoT Photometry

2011

AbstractThe long-period binary system AU Mon was photometrically observed on-board the CoRoT satellite in a continuous run of almost 60 days long which has covered almost 5 complete cycles. Unprecedented sub milimag precision of CoRoT photometry reveals all complexity of its light variations in this, still active mass-transfer binary system. We present images of an accretion disk reconstructed by eclipse mapping, and an optimization of intensity distribution along disk surface. Time resolution and accurate CoRoT photometric measurements allow precise location of spatial distribution of ‘hot’ spots on the disk, and tracing temporal changes in their activity. Clumpy disk structure is similar …

Physics010308 nuclear & particles physicsBinary numberAstronomyAstronomy and AstrophysicsTime resolutionAstrophysicsSpatial distribution01 natural sciencesPhotometry (optics)accretion disks; eclipsing binaries; AU MonAccretion discSpace and Planetary Science0103 physical sciencesBinary system010303 astronomy & astrophysics
researchProduct

Observational Effects of Anomalous Boundary Layers in Relativistic Jets

2008

Recent theoretical work has pointed out that the transition layer between a jet an the medium surrounding it may be more complex than previously thought. Under physically realizable conditions, the transverse profile of the Lorentz factor in the boundary layer can be non-monotonic, displaying the absolute maximum where the flow is faster than at the jet spine, followed by an steep fall off. Likewise, the rest-mass density, reaches an absolute minimum (coincident with the maximum in Lorentz factor) and then grows until it reaches the external medium value. Such a behavior is in contrast to the standard monotonic decline of the Lorentz factor (from a maximum value at the jet central spine) an…

PhysicsJet (fluid)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesBoundary (topology)Astronomy and AstrophysicsObservableMechanicsAstrophysicsAstrophysicsCore (optical fiber)Transverse planeBoundary layerLorentz factorsymbols.namesakeAstrophysical jetSpace and Planetary SciencesymbolsThe Astrophysical Journal
researchProduct

Simulations of Jets from Active Galactic Nuclei and Gamma‐Ray Bursts

2012

PhysicsActive galactic nucleusAstrophysical jetAstrophysicsMagnetohydrodynamicsGamma-ray burstRelativistic Jets from Active Galactic Nuclei
researchProduct

Catching the radio flare in CTA 102. III. Core-shift and spectral analysis

2013

The temporal and spatial spectral evolution of the jets of AGN can be studied with multi-frequency, multi-epoch VLBI observations. The combination of both, morphological and spectral parameters can be used to derive source intrinsic physical properties such as the magnetic field and the non-thermal particle density. In the first two papers of this series, we analyzed the single-dish light curves and the VLBI kinematics of the blazar CTA 102 and suggested a shock-shock interaction between a traveling and a standing shock wave as a possible scenario to explain the observed evolution of the component associated to the 2006 flare. In this paper we investigate the core-shift and spectral evoluti…

Shock waveAstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)OpacityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesRelativistic particlelaw.inventionlaw0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsLight curveCTA-102Space and Planetary ScienceAstronomiaAstrophysics - High Energy Astrophysical PhenomenaFlareAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

On the influence of a hybrid thermal-non-thermal distribution in the internal shocks model for blazars

2017

Internal shocks occurring in blazars may accelerate both thermal and non-thermal electrons. In this paper we examine the consequences that such a hybrid (thermal/non-thermal) EED has on the spectrum of blazars. Since the thermal component of the EED may extend to very low energies. We replace the standard synchrotron process by the more general magneto-bremsstrahlung (MBS). Significant differences in the energy flux appear at low radio frequencies when considering MBS instead of the standard synchrotron emission. A drop in the spectrum appears in the all the radio band and a prominent valley between the infrared and soft X-rays bands when a hybrid EED is considered, instead of a power-law E…

Shock waveAstrofísicaInfraredAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEnergy fluxAstrophysicsElectron01 natural sciencesRadio spectrumlaw.inventionlaw0103 physical sciencesThermal010306 general physicsBlazar010303 astronomy & astrophysicsOnes de xocHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsSynchrotron13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Afterglow Model for the Radio Emission from the Jetted Tidal Disruption Candidate Swift J1644+57

2011

The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve o…

High Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

GRB afterglow light curves from realistic density profiles

2011

The afterglow emission that follows gamma-ray bursts (GRBs) contains valuable information about the circumburst medium and, therefore, about the GRB progenitor. Theoretical studies of GRB blast waves, however, are often limited to simple density profiles for the external medium (mostly constant density and power-law R^{-k} ones). We argue that a large fraction of long-duration GRBs should take place in massive stellar clusters where the circumburst medium is much more complicated. As a case study, we simulate the propagation of a GRB blast wave in a medium shaped by the collision of the winds of O and Wolf-Rayet stars, the typical distance of which is d /sim 0.1 - 1 pc. Assuming a spherical…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Effect of contact lenses on ocular biometric measurements based on swept-source optical coherence tomography

2019

ABSTRACT Purpose: To determine the reliability of swept- source optical coherence tomography in cases in which soft contact lenses cannot be removed when acquiring biometric measurements. Methods: Eight subjects were included and only one eye per participant was analyzed. Each eye was measured six times by swept-source optical coherence tomography with the IOLMaster 700 instrument (Carl Zeiss Meditec, Jena, Germany). Axial length, central corneal thickness, anterior chamber depth, lens thickness, and keratometric measurements were evaluated for the naked eye and while wearing soft contact lenses of three different powers (-1.5, -3.0, and +2.0 D). Results: There were statistically significan…

genetic structuressense organseye diseases
researchProduct