0000000000069122

AUTHOR

Simone Eggert

0000-0002-6792-5556

showing 3 related works from this author

The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research

2021

Abstract Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo…

business.industryClinical BiochemistryFungiLiver failureNeurotoxicityfood and beveragesNeurodegenerative DiseasesMycotoxinsBioinformaticsmedicine.diseaseBiochemistryLimited accesschemistry.chemical_compoundAnimal modelchemistryAdverse health effectAnimalsHumansMedicinebusinessMycotoxinMolecular BiologyBiological Chemistry
researchProduct

Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of…

2021

Abstract Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer’s disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer’s disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuropro…

ADAM10Clinical BiochemistryNerve Tissue ProteinsTropomyosin receptor kinase BReceptors Nerve Growth FactorBiochemistryNeuroprotectionADAM10 ProteinAmyloid beta-Protein PrecursorNeurotrophic factorsAlzheimer DiseaseAmyloid precursor proteinHumansReceptor trkBMolecular BiologyLDL-Receptor Related ProteinsAmyloid beta-PeptidesMembrane GlycoproteinsbiologyBrain-Derived Neurotrophic FactorMembrane ProteinsMembrane Transport ProteinsAdaptor Proteins Vesicular Transportnervous systembiology.proteinSignal transductionAmyloid Precursor Protein SecretasesNeuroscienceAmyloid precursor protein secretaseNeurotrophinBiological chemistryReferences
researchProduct

LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State.

2017

The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 a…

0301 basic medicineADAM10amyloid precursor protein (APP)Endocytosislcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemental disordersSecretionReceptorMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySecretory pathwayOriginal ResearchdimerizationChemistryVesicleLRP1030104 developmental biologyBiochemistrytransportBiophysicsAxoplasmic transportprocessinglow density lipoprotein receptor-related protein 1 (LRP1)030217 neurology & neurosurgeryNeuroscienceFrontiers in molecular neuroscience
researchProduct