0000000000069742

AUTHOR

Aldo R. Boccaccini

0000-0002-7377-2955

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

research product

Porous biomaterials and scaffolds for tissue engineering

In the present article, an overview of the definition of tissue engineering and scaffold requirements is reported. In particular, scaffold porosity and its relevance for several tissue target regeneration is highlighted. Different scaffold fabrication techniques are reported and explained in details, highlighting advantages and disadvantages for all of these techniques, regarding the specific final applications.

research product

Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules

In a large number of medical devices, a key feature of a biomaterial is the ability to successfully bond to living tissues by means of engineered mechanisms such as the enhancement of biomineralization on a bone tissue engineering scaffold or the mimicking of the natural structure of the extracellular matrix (ECM). This ability is commonly referred to as "bioactivity". Materials sciences started to grow interest in it since the development of bioactive glasses by Larry Hench five decades ago. As the main goal in applications of biomedical devices and tissue scaffolds is to obtain a seamless tissue-material interface, achieving optimal bioactivity is essential for the success of most biomate…

research product

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold archite…

research product

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

research product