0000000000069784

AUTHOR

Ricardo Cepedello

0000-0002-1199-0711

Dark matter stability and Dirac neutrinos using only Standard Model symmetries

We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global $U(1)_{B-L}$ symmetry already present in Standard Model. The $U(1)_{B-L}$ symmetry is broken down to a residual even $\mathcal{Z}_n$; $n \geq 4$ subgroup. The residual $\mathcal{Z}_n$ symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The $U(1)_{B-L}$ symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.

research product

Minimal 3-loop neutrino mass models and charged lepton flavor violation

We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models "minimal" since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow …

research product

(g−2) anomalies and neutrino mass

Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments $a_\alpha = (g-2)_\alpha$ for $\alpha=e,\mu$ in a neutrino mass model originally proposed by Babu-Nandi-Tavartkiladze (BNT). We discuss two variants of the model, the original model plus a minimally extended version with an additional hypercharge zero triplet scalar. While the original BNT model can explain $a_\mu$, only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC and in the part of parameter space, where the model explains the experimental anomalies, it pre…

research product

Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries

We show that the scotogenic dark symmetry can be obtained as a residual subgroup of the global $U(1)_{B-L}$ symmetry already present in Standard Model. We propose a general framework where the $U(1)_{B-L}$ symmetry is spontaneously broken to an even $\mathcal{Z}_{2n}$ subgroup, setting the general conditions for neutrinos to be Majorana and the dark matter stability in terms of the residual $\mathcal{Z}_{2n}$. Under this general framework, as examples, we build a class of simple models where, in the scotogenic spirit, the dark matter candidate is the lightest particle running inside the neutrino mass loop. The global $U(1)_{B-L}$ symmetry in our framework being anomaly free can also be gaug…

research product