0000000000072670
AUTHOR
P. Nielaba
Classical and Quantum Two-Dimensional Fluids in the Gibbs Ensemble
We study the properties of model fluids in two spatial dimensions with Gibbs ensemble Monte Carlo (GEMC) techniques. In particular in the first part of the paper we study the entropy driven phase separation in case of a nonadditive symmetric hard disc fluid and locate by a combination of GEMC with finite size scaling techniques the critical line of nonadditivities as a function of the system density, which separates the mixing/demixing regions, we compare with a simple approximation. In the second part we successfully combine path integral Monte Carlo (PIMC) and GEMC techniques in order to locate the gas-liquid coexistence densities for a fluid with classical degrees of freedom and internal…
Phase transitions in nonadditive hard disc systems: a Gibbs ensemble Monte Carlo Study
we study the properties of a model fluid in two dimensions with Gibbs ensemble Monte Carlo (GEMC) techniques, in particular we analyze the entropy-driven phase separation in case of a nonadditive symmetric hard disc fluid. By a combination of GEMC with finite size scaling techniques we locate the critical line of nonadditivities as a function of the system density, which separates the mixing/demixing regions and compare with a simple analytical approximation.
Phase Transitions in Classical Fluids and Fluids with Internal Quantum States in Two Dimensions: Computer Simulations and Theory
1)We investigate the properties of a model fluid whose molecules have classical degrees of freedom in two dimensions and two internal quantum states. The attractive interactions are “turned on” when the internal states are hybridized, corresponding to the molecules acquiring a “dipole” moment. The phase diagram of this system in the temperature- density plane is investigated by a combination of path integral Monte Carlo and block size analysis techniques. The results are compared with mean- field—theory predictions. 2) We present molecular dynamics simulation results of quenches into the unstable region of a two-dimensional Lennard-Jones system. The evolution of the system from the non-equi…
Phase transitions and quantum effects in adsorbed monolayers
Phase transitions in absorbed (two-dimensional) fluids and in absorbed layers of linear molecules are studied with a combination of path integral Monte Carlo (PIMC), Gibbs ensemble Monte Carlo (GEMC), and finite size scaling techniques. For a classical (nonadditive) hard-disk fluid the “critical” nonadditivities, where the entropy-driven phase separations set in, are presented. For a fluid with internal quantum states the gas-liquid coexistence region, tricritical, and triple points can be determined, and a comparison with density functional (DFT) results shows good agreement for the freezing densities. LinearN 2 molecules adsorbed on graphite (in the √3 × √3 structure) show a transition fr…
Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics
Density-functional theory is applied to compute the ground-state energies of quantum hard-sphere solids. The modified weighted-density approximation is used to map both the Bose and the Fermi solid onto a corresponding uniform Bose liquid, assuming negligible exchange for the Fermi solid. The required liquid-state input data are obtained from a paired phonon analysis and the Feynman approximation, connecting the static structure factor and the linear response function. The Fermi liquid is treated by the Wu-Feenberg cluster expansion, which approximately accounts for the effects of antisymmetry. Liquid-solid transitions for both systems are obtained with no adjustment of input data. Limited …
Path-Integral Monte Carlo Simulation for H2 and D2 Adsorbed on Graphite
Molecular layers are very good realizations of two dimensional systems. Hydrogen molecules H 2,HD,D 2 adsorbed on graphite are excellent model systems for investigating the influence of substrate fields and of quantum effects on phase transitions. At a coverage of a complete commensurable layer in the √3 x √3 R30° structure experiments showed an anomalous effect, the system with the lighter H 2 molecules has a higher order-disorder transition temperature compared to the system with the heavier D 2 molecules. By a combination of path integral Monte Carlo and finite size scaling techniques we analyze this effect. In detail we study the order parameter and the cumulants and discuss the impact …
Diffusive energy growth in classical and quantum driven oscillators
We study the long-time stability of oscillators driven by time-dependent forces originating from dynamical systems with varying degrees of randomness. The asymptotic energy growth is related to ergodic properties of the dynamical system: when the autocorrelation of the force decays sufficiently fast one typically obtains linear diffusive growth of the energy. For a system with good mixing properties we obtain a stronger result in the form of a central limit theorem. If the autocorrelation decays slowly or does not decay, the behavior can depend on subtle properties of the particular model. We study this dependence in detail for a family of quasiperiodic forces. The solution involves the ana…
Gibbs-ensemble path-integral Monte Carlo simulations of a mixed quantum-classical fluid
We study a model fluid with classical translational degrees of freedom and internal quantum states in two spatial dimensions. The path-integral Monte Carlo and the Gibbs-ensemble Monte Carlo techniques are combined to investigate the liquid-gas coexistence region in this mixed quantum-classical system. A comparison with the phase diagram obtained in the canonical ensemble is also presented.