0000000000072794

AUTHOR

Francesca Parmigiani

PSA-based phase regeneration of DPSK signals in a silicon germanium waveguide

We demonstrate a polarization-assisted PSA-based phase regenerator in a passive low-birefringence SiGe waveguide at low CW pump power. A PSER of 28.6-dB enables a six-fold reduction in phase-error and BER improvement of approximately 2-dB in the regenerated signal.

research product

Record Phase Sensitive Extinction Ratio in a Silicon Germanium Waveguide

A binary step-like phase response and phase-sensitive extinction ratio in excess of 28dB under CW pump operation was demonstrated in a 20mm-long low birefringence SiGe waveguide, using a polarization-assisted phase sensitive amplifier scheme.

research product

Simultaneous 2R regeneration of WDM signals in a single optical fibre

Two experimental implementations of amplitude regeneration of WDM signals based on self-phase modulation (SPM) in optical fibres are discussed. The two examples differ in their approach of mitigation of inter-channel nonlinearities.

research product

Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime

We show analytically and numerically that parabolic pulses and similaritons are not always synonyms and that a self-phase modulation amplification regime can precede the self-similar evolution. The properties of the recompressed pulses after SPM amplification are investigated. We also demonstrate that negatively chirped parabolic pulses can exhibit a spectral recompression during amplification leading to high-power chirp-free parabolic pulses at the amplifier output.

research product

Advanced nonlinear signal processing in silicon-based waveguides

This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.

research product

Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating

International audience; We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPMbroadened pulses centred at 1542nm with 92% of the pulse energy remaining within the 29nm 3dB spectral bandwidth. Appli…

research product

Polarization insensitive wavelength conversion of 40 Gb/s DPSK signals in a silicon germanium waveguide

We demonstrate polarization insensitive FWM-based wavelength conversion of 40Gb/s DPSK signals in a SiGe waveguide, with 0.42-dB polarization-dependent loss. A 1.5-dB Dower nenaltv was measured at a BER of 10−9.

research product

Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using a fiber Bragg grating based parabolic pulse shaper

We demonstrate the generation of ultra-flat broadened spectra by seeding a nonlinear fiber with parabolic pulses shaped using a fiber grating. Applications in pulse compression and spectral slicing are shown.

research product

Polarization Insensitive Wavelength Conversion in a Low-Birefringence SiGe Waveguide

We report the first demonstration of a single-pass dual-orthogonal-pump four-wave mixing-based wavelength conversion scheme in a silicon-based waveguide. The silicon germanium waveguide used was designed to exhibit strong TE/TM mode similarity across a broad wavelength range as well as a large nonlinear coefficient. A polarization-dependent loss of just 0.42 dB was measured, and the conversion of 40-Gb/s differential phase-shift keying signals was demonstrated with 1.5-dB power penalty at a bit error ratio of $10^{-9}$ .

research product