0000000000072846
AUTHOR
Clemens Walther
Pulsed photodissociation in an ion cyclotron resonance trap: extending the time range for unimolecular dissociation studies of metal clusters
First Observation of Multiply Charged Vanadium Clusters in a Penning Trap
Electron impact ionization/dissociation of size selected gold cluster cations
Abstract Singly charged gold clusters, Au n + in the size range n =12 to 72 have been captured and stored in a Penning trap, size selected and subjected to an electron beam. This interaction leads to further ionization as well as dissociation. The resulting abundance spectra of doubly and triply charged clusters show (a) a lower size limit for the production of multiply charged clusters from an ensemble of hot precursors, which can be understood in terms of the respective decay pathways, (b) an odd/even alternation of singly and doubly charged clusters in the size range below n =30, which inverses sign with change of charge state, and (c) magic numbers, i.e. prominent signals for particular…
Time resolved photofragmentation of Au $_{n}^{+}$ and Ag $_{n}^{+}$ clusters (n = 9, 21)
Gold and silver cluster ions were produced by laser vaporization and stored in a Penning trap. After mass selection the cluster sizes of interest were illuminated by a laser pulse and electronically excited. Photoabsorption cross sections and fragmentation patterns were measured for photon energies of 2.3 eV to 5.2 eV. Unimolecular dissociation was observed time resolved on a microsecond to millisecond scale. Dissociation energies were deduced from the measured life times.
The temperature dependence of photoabsorption of V13+
Photoabsorption cross sections of trapped V 13 + clusters were measured for energies between 1.4 eV and 6.1 eV by use of a two-photon fragmentation technique. Using two laser pulses separated by a 100-ns delay period the cross sections of hot clusters (up to 1800 K) could be compared to the values at room temperature. Whereas sodium clusters are known to exhibit pronounced temperature dependence below 300 K, no continuation of these effects to higher temperatures was found for V 13 + .
The dissociation channels of silver clusters Agn+, 3 ≤ n ≤ 20
Abstract The low energy dissociation channels of silver cluster ions Agn+, 3 ≤ n ≤ 20 are determined by collision-induced dissociation (CID) in a Penning trap. While for most cluster sizes the first fragment cluster ion is produced by monomer evaporation, the fragment ion of small odd-sized clusters has two atoms less than their precursors indicating an evaporation of dimers. The results are compared to similar CID studies on gold cluster ions, photofragmentation patterns, abundance spectra for various silver-cluster production techniques and calculated binding energies.
Electronic effects in the production of smali dianionic gold clusters by electron attachment on to stored Au-n, n = 12-28
Abstract Single charged gold clusters Au n -, 12 n 28, are stored in a Penning trap, size selected and transformed into dianions, Au2- n by the application of an electron beam. At the onset of dianion production, that is that range of cluster sizes n where the smallest doubly charged clusters are observed, the measured intensity ratio of the dianions to their precursors is not a continuous function of cluster size. Instead, there is a strong odd-even effect and a comparatively intense signal of Au2-18 The observed structures are very reminiscent of similar phenomena in the abundance spectra of metal clusters as observed by Knight et al. (1984, Phys. Rev. Lett., 52, 2141), which gave ris…
Photo fragmentation of metal clusters stored in a penning trap
Photo fragmentation studies of stored mass selected metal cluster ions of a large size range are reported. The experimental method and the data evaluation are described in detail. Gold cluster ions were produced by laser vaporization and stored in a Penning trap. After size selection they were electronically excited by irradiation with a pulsed laser beam. Relaxation by evaporation of neutral atoms and dimers was observed as a function of photon energy. From these data upper and lower limits for dissociation energies are determined for Aun + (n=3 to 23).
Resonant laser–SNMS for spatially resolved and element selective ultra-trace analysis of radionuclides
The newly developed resonant laser–SNMS system at the IRS Hannover combines the high spatial and decent mass resolution of a TOF-SIMS instrument with the element-selective process of resonant laser ionization. This setup was characterized by use of synthetic uranium, plutonium and technetium samples to prepare and demonstrate the performance for measurements on environmental samples. The laser–SNMS system will be applied for the detection, visualization and ultra-trace analysis of radionuclide containing nanoparticles in environmental samples with strongly reduced or even completely omitted chemical preparation. The necessary suppression of isobaric contamination was demonstrated as well as…
DELAYED ELECTRON EMISSION OF NEGATIVELY CHARGED TUNGSTEN CLUSTERS
The delayed electron emission of negatively charged tungsten clusters has been investigated on a time scale from 1 to 500 ms. After being stored in a Penning trap clusters ions [Formula: see text] were heated via multiphoton absorption (hν=1.81 eV). In contrast to alkali and coinage metals no photofragmentation could be detected. Instead, for all cluster sizes studied so far only a decrease in the initial ion intensity as a function of time after excitation was observed. This decrease is not caused by ion loss from the trap, but has to be attributed to neutralization via delayed electron emission. The presented results strongly suggest that this process can be viewed as “thermionic emissio…
Absolute cross-sections for the nonresonant multi-photon ionization of toluene and xylene in the gas phase
Abstract The absolute multi-photon ionization cross-section of the phenyl ring was determined by laser-ionization of toluene and xylene molecules in the gas phase. Excitation was achieved using nonresonant four-photon absorption of the frequency doubled light of a 10 ns pulsed Nd:YAG laser (532 nm). The resulting ions were stored in a Penning trap and detected by time-of-flight mass spectrometry. The values of the cross-sections are 1.4(3)×10 −42 cm 8 W −4 s −1 and 1.3(3)×10 −42 cm 8 W −4 s −1 for toluene and xylene, respectively.
Observation of electronic and geometric shell structures of small silver clusters
Singly charged silver clusters Open image in new window in the size range n = 17 to n = 78 have been captured and stored in a Penning trap, size selected and subjected to an electron beam which leads to further ionization as well as dissociation. The resulting abundance spectra of doubly and triply charged clusters show several features: (1) A critical size for the production of doubly charged clusters which can be understood in terms of the decay pathways as previously investigated by collision induced dissociation, (2) an odd-even alternation in the abundance of singly and doubly charged clusters which inverses sign with change of charge state, (3) prominent signals for particular doubly …
The influence of internal degrees of freedom on the unimolecular decay of the molecule–cluster compound Au8+CH3OH
Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster–methanol binding energy.
Trapped metal cluster ions
An overview is given of experiments with stored metal cluster ions in a Penning trap system. The setup allows axial injection of clusters produced in an external source and a time-of-flight mass analysis of the reaction products after axial ejection. The system's options include the selection of stored ions, the manipulation of their orbits, addition of reactant and buffer gases and axial optical access for laser spectroscopic studies. As described by various examples, investigations have been made with respect to the development of trapping techniques and the characterization of metal clusters in terms of their physical and chemical properties.
Collision induced dissociation of doubly charged stored metal cluster ions
Fission barriers of doubly charged silver clusters
The monomer evaporation energies and fission barriers of doubly charged silver cluster ions in the size range 9≤n≤25 are measured by collision induced dissociation. They are compared to the dissociation energies of singly charged silver clusters. A macroscopic liquid drop model combined with empirical microscopic corrections successfully describes the measured fission barriers.
Radiative Cooling of a Small Metal Cluster: The Case ofV13+
Size-selected stored metal cluster ions, ${\mathrm{V}}_{13}^{+}$, have been heated by photoexcitation ( $\ensuremath{\lambda}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}730$ to 229 nm) to well-defined excitation energies corresponding to temperatures between 1000 and 2100 K. A millisecond pump-probe photodissociation technique was applied to measure the time-resolved radiative cooling. The observed decay rates are directly related to the radiative energy loss and are explained quantitatively by the competing processes of photoemission and atom evaporation.
Probing cluster structures with sensor molecules: methanol adsorbed onto gold clusters
Abstract Structural, dynamical and electronic properties of the adducts formed by adsorbing methanol onto size-selected gold clusters are investigated using infrared multiple-photon dissociation spectroscopy of trapped Au n + CH 3 OH, n ⩽15, in conjunction with Car–Parrinello calculations. The C–O stretching vibration of the attached sensor molecule changes discontinuously as a function of cluster size, which is traced back to a change in dimensionality of the cluster structure.
The Mainz Cluster Trap
When cluster ions are stored by electromagnetic forces they are available in the gas phase for extended preparations and investigations. Over the last decade a Penning trap (Ion Cyclotron Resonance) apparatus has been constructed and further developed with respect to metal cluster research at the Institute of Physics at Mainz. It allows to capture and accumulate ion bunches injected from an external cluster source and to manipulate the ions’ motion, i.e. select and center the clusters of interest. The interactions that have been investigated include those with inert and chemically reactive gases, photons and electrons. Multiple mass spectrometric steps such as fragment ion selection can be …
New horizons in microparticle forensics: Actinide imaging and detection of 238Pu and 242mAm in hot particles
Description
Decay pathways of stored metal-cluster anions after collisional activation
Size-selected gold clusters, Open image in new window (n ≤ 21), and tungsten clusters, Open image in new window , and Open image in new window (n = 4 – 8 and 12), stored in a Penning trap have been collisionally activated. Neutral monomer and dimer evaporation are observed in the case of gold. While no fragment products have been observed for tungsten clusters, there is evidence of electron emission from the anions.
Low-energy decay pathways of doubly charged silver clusters $Ag_{n}^{2+}$ (n = 9 - 24)
The low-energy dissociation channels of mass selected silver cluster ions Ag n 2+ (n = 9–24) are determined by collision induced dissociation (CID) in a Penning trap. While all clusters of the size n ≥ 17 evaporate neutral monomers, most smaller clusters undergo asymmetric fission of the form Ag n 2+ → Ag −3 + + Ag {3} + . However, Ag 15 2+ and Ag 11 2+ emit monomers which indicates shell or odd-even effects. The observed fragmentation pathways are different from previous reports of measurements with sputtered Ag n 2+ .
First Observation of Doubly Charged Negative Gold Cluster Ions
Singly charged gold cluster anions in the size range n = 16–30 have been captured, stored and size selected in a Penning trap. After application of an electron beam doubly charged gold cluster anions have been observed for 20 ≤ n ≤ 30. To our knowledge this is the first observation of metal cluster dianions. The threshold appearance size is in good agreement with a simple charged sphere model. The application of argon gas pulses simultaneously with the electron beam is found to increase the production rate by an order of magnitude.
A new resonant Laser-SNMS system for environmental ultra-trace analysis: Installation and optimization
Abstract Localization, analysis and mobility of radioactive contaminated particles is of major concern for assessment of contamination threads and nuclear forensics. For this purpose, a new resonant Laser-SNMS system was developed and set up at the Institute for Radioecology and Radiation Protection for spatially resolved ultra-trace analysis of low concentrated radionuclides directly on environmental samples. This paper describes the adaption and combination of a dedicated Ti:sapphire laser system with a commercial TOF-SIMS instrument for resonant Laser-SNMS. The project includes computer simulations for optimization of the TOF analyzer. Results on synthetic uranium and technetium samples …
Decay pathway determination of even-size dicationic silver clusters: Ag162+ and Ag182+ revisited by pre-precursor selection and sequential decay
Abstract It is demonstrated how by selection of pre-precursor cluster ions Ag 2 n +1 2+ and collision-induced dissociation an ensemble of Ag 2 n 2+ can be produced, which is not contaminated by Ag n + clusters of the same size-to-charge state ratio, n / z . By use of this technique, Ag 16 2+ and Ag 18 2+ precursor ensembles have been prepared for further investigations. They are observed to decay by neutral monomer evaporation, Ag 2 n 2+ →Ag 2 n −1 2+ +Ag, and trimer fission, Ag 2 n 2+ →Ag 2 n −3 + +Ag 3 + , and show no sign of symmetric fission.