0000000000072959

AUTHOR

H. Su

showing 18 related works from this author

Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud con…

2009

Abstract. We have investigated the formation of cloud droplets under (pyro-)convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.5–20 m s−1) and aerosol particle number concentrations (NCN=103–105 cm−3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w…

researchProduct

The on-orbit calibration of DArk Matter Particle Explorer

2019

Abstract The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesNeutron detectionDark MatterInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCalorimeter (particle physics)010308 nuclear & particles physicsDetectorSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyAstronomy and AstrophysicsCosmic RaysSouth Atlantic AnomalyHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

2017

High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the …

Astrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesdark matterHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Positroncosmic rays0103 physical sciences010303 astronomy & astrophysicsCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic rays dark matter electrons space experimentsMultidisciplinaryAnnihilation010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectrum (functional analysis)electronsGalaxyHigh Energy Physics - PhenomenologyHigh Energy Physics::Experimentspace experimentsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus

2018

Abstract. Soil and biological soil crusts can emit nitrous acid (HONO) and nitric oxide (NO). The terrestrial ground surface in arid and semiarid regions is anticipated to play an important role in the local atmospheric HONO budget, deemed to represent one of the unaccounted-for HONO sources frequently observed in field studies. In this study HONO and NO emissions from a representative variety of soil and biological soil crust samples from the Mediterranean island Cyprus were investigated under controlled laboratory conditions. A wide range of fluxes was observed, ranging from 0.6 to 264 ng m−2 s−1 HONO-N at optimal soil water content (20–30 % of water holding capacity, WHC). Maximum NO-N f…

Mediterranean climateAtmospheric ScienceNitrous acid010504 meteorology & atmospheric sciencesBiological soil crust010501 environmental sciences01 natural sciencesAridlcsh:QC1-999lcsh:ChemistryAtmospherechemistry.chemical_compoundNutrientlcsh:QD1-999chemistryNitrateEnvironmental chemistrySoil waterEnvironmental sciencelcsh:Physics0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

2015

A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrome…

lcsh:Chemistrylcsh:QD1-999lcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite

2019

DAMPE satellite has directly measured the cosmic ray proton spectrum from 40 GeV to 100 TeV and revealed a new feature at about 13.6 TeV.

dark matter cosmic rays spaceProtonMilky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsKinetic energy01 natural sciences0103 physical sciences010306 general physicsNuclear ExperimentResearch ArticlesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral indexMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySettore FIS/01 - Fisica SperimentaleSciAdv r-articlesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaResearch Article
researchProduct

Observations of Forbush Decreases of cosmic ray electrons and positrons with the Dark Matter Particle Explorer

2021

The Forbush Decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections (CMEs) or high-speed streams from coronal holes. It has been mainly explored with ground-based neutron monitors network which indirectly measure the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmosphere atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relative small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic ray electrons and positrons have …

Dark Matter cosmic raysAstrophysics::High Energy Astrophysical PhenomenaDark matterCoronal holeFOS: Physical sciencesCosmic rayAstrophysicsdisturbancesCoronal mass ejectionForbush decreaseNeutronplastic scintillator detectorPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron monitordriftSettore FIS/01 - Fisica SperimentaleAstronomy and AstrophysicsdependenceForbush decrease cosmic rayscalibrationsolarCharged particlemodulationSpace and Planetary SciencetransportPhysics::Space PhysicsintensityAstrophysics - High Energy Astrophysical Phenomenaenergy
researchProduct

Aerosol and dynamic effects on the formation and evolution of pyro-clouds

2014

Abstract. A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration …

researchProduct

Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles

2020

Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and a…

Atmospheric ScienceAccuracy and precisionMaterials science010504 meteorology & atmospheric sciencesTandemlcsh:TA715-787lcsh:Earthwork. FoundationsNanoparticleNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSizinglcsh:Environmental engineeringVolumetric flow rateAerosolDifferential mobility analyzerNano-lcsh:TA170-1710210 nano-technology0105 earth and related environmental sciencesAtmospheric Measurement Techniques
researchProduct

Measurements with a hybrid detector prototype composed of a MOS CCD and a CZT spectrometer

2008

The scientific objectives of the future X-ray astronomy instruments require new type of focusing telescopes able to extend the observational range starting from 0.1 keV at least up to 100 keV to solve crucial question concerning the nature of the high energy emission. A challenging technology to extend the classical grazing incidence range to higher energy is today offered by the development of multilayer optics that are effective as X-ray concentrators between few keV up to 100 keV. A useful arrangement for this type of mission concept can foresee the soft (e.g. 0.1-10 keV) X-ray optics nested and coaxial with the hard-X mirrors. The focal plane of the telescope shall operate on a very wid…

PhysicsSpace technologyPixelSpectrometerPhysics::Instrumentation and Detectorsbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaDetectorAstrophysics::Instrumentation and Methods for Astrophysicslaw.inventionTelescopeOpticsCardinal pointlawOptoelectronicsCoaxialbusinessImage resolutionCZT detectors2008 IEEE Nuclear Science Symposium Conference Record
researchProduct

Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

2016

Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %), an initial γ of (1.1 ± 0.05)  ×  …

lcsh:Chemistrylcsh:QD1-999lcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Measurement of the Cosmic Ray Helium Energy Spectrum from 70 GeV to 80 TeV with the DAMPE Space Mission

2021

The measurement of the energy spectrum of cosmic ray helium nuclei from 70 GeV to 80 TeV using 4.5 years of data recorded by the DArk Matter Particle Explorer (DAMPE) is reported in this work. A hardening of the spectrum is observed at an energy of about 1.3 TeV, similar to previous observations. In addition, a spectral softening at about 34 TeV is revealed for the first time with large statistics and well controlled systematic uncertainties, with an overall significance of $4.3\sigma$. The DAMPE spectral measurements of both cosmic protons and helium nuclei suggest a particle charge dependent softening energy, although with current uncertainties a dependence on the number of nucleons canno…

Astrophysics::High Energy Astrophysical PhenomenaDark matterGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesCosmic raySpace (mathematics)01 natural sciences7. Clean energyCosmic ray heliumHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesEnergy spectrumcosmic rays dark matter spacecrystals010306 general physicsHeliumPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer databasedetectorSettore FIS/01 - Fisica SperimentalecalibrationchemistryParticleAstrophysics - High Energy Astrophysical PhenomenaNucleonperformance
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct

Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site

2018

The Amazon rainforest is a sensitive ecosystem experiencing the combined pressures of progressing deforestation and climate change. Its atmospheric conditions oscillate between biogenic and biomass burning (BB) dominated states. The Amazon further represents one of the few remaining continental places where the atmosphere approaches pristine conditions during occasional wet season episodes. The Amazon Tall Tower Observatory (ATTO) has been established in central Amazonia to investigate the complex interactions between the rainforest ecosystem and the atmosphere. Physical and chemical aerosol properties have been analyzed continuously since 2012. This paper provides an in-depth analysis of t…

Atmospheric Science010504 meteorology & atmospheric sciencesSingle-scattering albedoAmazon rainforest010501 environmental sciencesCombustionAtmospheric sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryAtmospherelcsh:QD1-999Dry seasonForest ecologyEnvironmental scienceAbsorption (electromagnetic radiation)lcsh:Physics0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke

2020

Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline …

Atmospheric Science010504 meteorology & atmospheric sciences[SDE.MCG]Environmental Sciences/Global ChangesPopulation010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesAtmospherelcsh:ChemistryAltitudeConvective mixingddc:550Cloud condensation nucleiMass concentration (chemistry)educationbiomass burning aerosol transport airborne measurement Amazon basin0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]education.field_of_studyAmazon rainforestAtmosphärische Spurenstoffe15. Life on landOberpfaffenhofenBACIA HIDROGRÁFICAlcsh:QC1-999Aerosollcsh:QD1-99913. Climate actionEnvironmental sciencelcsh:Physics
researchProduct

Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO

2016

Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX (CYprus PHotochemical EXperiment) campaign in summer 2014. Average volume mixing ratios of HONO were 35 pptv (±25 pptv) with a HONO ∕ NOx ratio of 0.33, which was considerably higher than reported for most other rural and urban regions. Diel profiles of HONO showed peak values in the late morning (60 ± 28 pptv around 09:00 local time) and persistently high mixing ratios during daytime (45 ± 18 pptv), indicating …

lcsh:Chemistrylcsh:QD1-999lcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Light-induced protein nitration and degradation with HONO emission

2017

Proteins can be nitrated by air pollutants (NO2), enhancing their allergenic potential. This work provides insight into protein nitration and subsequent decomposition in the presence of solar radiation. We also investigated light-induced formation of nitrous acid (HONO) from protein surfaces that were nitrated either online with instantaneous gas-phase exposure to NO2 or offline by an efficient nitration agent (tetranitromethane, TNM). Bovine serum albumin (BSA) and ovalbumin (OVA) were used as model substances for proteins. Nitration degrees of about 1 % were derived applying NO2 concentrations of 100 ppb under VIS∕UV illuminated conditions, while simultaneous decomposition of (nitrated) p…

lcsh:Chemistrylcsh:QD1-999lcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud con…

2009

We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (<i>N<sub>CD</sub></i>) for a wide range of updraft velocities (<i>w</i>=0.25–20 m s<sup>−1</sup>) and aerosol particle number concentrations (<i>N<sub>CN</sub>&lt…

lcsh:Chemistrylcsh:QD1-999550lcsh:Physicslcsh:QC1-999
researchProduct