Experimental Comparison of the MIG and Friction Stir Welding Processes for AA 6005 Aluminium Alloy
In this study, the mechanical properties of welded joints of AA 6005 aluminum alloy obtained with friction stir welding (FSW) and conventional metal inert gas welding (MIG) are studied. FSW welds were carried out on a semi-automatic milling machine. The performance of FSW and MIG welded joints were identified using tensile and bending impact tests, as far as the environmental aspects are also included in the discussion. The joints obtained with FSW and MIG processes were also investigated in their microstructure. The results indicate that, the microstructure of the friction stir weld is different from that of MIG welded joint. The weld nugget consists of small grains in FSW than those found…
Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools
Abstract Wear prediction in machining has been recently studied by FEM although the use of numerical methods for such applications is still a very challenging research issue. In fact, wear phenomenon involves many aspects related to process mechanics which require a very accurate modelling. In other words, only a very punctual code set-up can help the researchers in order to obtain consistent results in FE analysis. The high relative velocity between chip and tool requires effective material models as well as friction modelling at the interface. Moreover the prediction of temperature distribution is another critical task; in the paper some different procedures are discussed. Subsequently a …
On the Finite Element Simulation of Secondary Operations on Metallic Foams
Metallic foams have been recently introduced also as industrial materials due to their well known advantages. In fact, their low mass in conjunction with the good thermal and mechanical properties push toward an extensive diffusion in manufacturing industry. In the study here addressed, a very accurate investigation concerning the latter two aspects has been carried out. In fact, a secondary manufacturing process, i.e. the foam bending, has been taken into account. Anyway, all the knowledge derived for sheet metal bending is not directly applicable to the foams. A finite element code has been utilized for modeling the foam behavior during the bending processes and an accurate material rheol…
A simple inverse procedure to determine heat flux on the tool in orthogonal cutting
The applications of numerical simulation to machining processes have been more and more increasing in the last decade: today, a quite effective predictive capability has been reached, at least as far as global cutting variables (for instance cutting forces) are concerned. On the other hand, the capability to predict local cutting variables (i.e. stresses acting on the tool, temperature distribution, residual stresses in the machined surface) has to be furtherly improved, as well as effective experimental procedures to validate numerical results have to be developed. The aim of this paper is the proposition of an innovative approach, based on an simple inverse procedure, in order to identify…
A Critical Analysis on the Friction Modeling in Orthogonal Cutting of Steel
Numerical simulation of cutting process is today moving towards two different directions. The former concerns the development of high performance codes able to approach the 3D phenomena, the latter is already focused on the study of some fundamental aspects whose full understanding may be strategic for the knowledge enhancing in this very complex field. In the paper this second way was pursued and a wide analysis on the numerical robustness of the 2D orthogonal cutting process is presented. In particular, the role played by the friction modeling is discussed taking into account a wide integrated numerical and experimental campaign.
On the FE codes capability for tool temperature calculation in machining processes
Abstract The applications of numerical simulation to machining processes have been more and more growing in the last years: today a quite effective predictive capability has been reached, at least as far as global cutting variables (for instance cutting forces) are concerned. On the other hand, the capability to predict local cutting variables (i.e. pressure on the tool, temperature distribution, residual stresses in the machined surface) has to be heavily improved and verified. At the same time, effective experimental procedures for validating numerical results have to be developed. In this work two different approaches were implemented for temperature measuring: a thermocouple based appro…
The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining
Abstract This paper presents results of an experimental study of cryogenic machining of hardened AISI 52100 steel, focusing on surface integrity. Experiments were performed under dry and cryogenic cooling conditions using CBN tools varying cutting speeds, workpiece hardness and tool geometry. Surface integrity parameters (surface roughness, white layer thickness, residual stresses, metallurgical conditions including grain size, phase transformation, etc.) were investigated to establish the effects of cryogenic cooling on the surface integrity of the machined component, and results were compared with those from dry hard machining. Overall, cryogenic cooling provides improved surface integrit…
On the finite element simulation of thermal phenomena in machining processes
Machining processes are frequently investigated by numerical simulations. Usually 2D analyses are carried out in order to reduce CPU times, considering orthogonal cutting conditions. In this way, the computational time sharply reduces and many process variables may be calculated (i.e. forces, chip morphology, shear angle, contact length). On the other hand, the analysis of thermal aspects involved in machining, for instance the temperature distribution reached in tool, still represents an open problem. Finite element codes are able to simulate a very short process time that is not sufficient to reach steady state conditions. Several approaches have been proposed to overcome this problem: in…
Assessment of material models through simple machining tests
The accuracy of the results obtained from FEM simulation of machining operations depends on the accuracy of input data. Among these, the flow stress data of the workpiece are extremely important together with the friction along the tool-chip interface. In this study, an identification procedure for the determination of material parameters that are used for the FEM simulation of machining processes is proposed. The procedure is based on the coupling of a numerical identification procedure and Arbitrarian Lagrangian Eulerian (ALE) Finite Element simulations of turning operations. An experimental campaign was developed in order to calibrate the model and to validate the procedure. The basic id…
An integrated approach to the design of tube hydroforming processes: artificial intelligence, numerical analysis and experimental investigation
In the last years, the growing role of process flexibility in modern mechanical industries has driven a rising interest in optimisation of process/product design through innovative techniques. Moreover, the development of niche productions, which are characterised by low production volumes and small batches leads to the need of more flexible and rapid forming technologies. In this way, a great research effort is performed towards the study of new stamping processes: among them hydro forming finds a large interest in automotive industry since it allows to significantly reduce tooling costs and also to avoid some secondary operations. Different studies are available in the technical literatur…
On the evaluation of the global heat transfer coefficient in cutting
The use of numerical simulations for investigating machining processes is remarkably increasing because of the simulation cost is lower than the experiments and the possibility to analyze local variables such as pressures, strains, and temperatures is allowable. Process simulation is very hard from a computational point of view, since it frequently requires remeshing phases and very small time steps. As a consequence, the simulated cutting time is usually of the order of few milliseconds and no steady cutting conditions are generally achieved, at least as far as thermal conditions are concerned. Therefore, nowadays numerical prediction of cutting temperatures cannot be considered fully reli…
Innovative user defined density profile approach to fsw of aluminium foam
Metallic foams are one of the most exciting materials in the world of mechanical industry due to their reduced mass and the good mechanical, thermal and acoustic characteristics. Consequently, their application, is increasing day by day even with the important drawbacks that reduce their suitability and diffusion such as high manufacturing cost and difficulty in processing. An innovative approach is outlined in this paper that enables the production of complex shapes taking advantage of deformation processing and friction stir welding (FSW). The aim is to create customized tailored manufactured parts. The cellular construction of foams makes this approach rather challenging as the cell wall…
A critical analysis on the friction modelling in orthogonal machining
Abstract Despite the development of high performance finite element-based codes, the simulation of machining still represents a very hard task due to the geometric complexity of the real chip-tool systems and the high cutting speed that requires very long simulation times. For these reasons, many aspects related to machining are not very clear and so easy to simulate. In this paper a rigorous investigation on the role played by the implemented friction model within a 2D simulation of orthogonal cutting was carried out, taking into account different models proposed by the researchers in the last years. The main simulation results were compared with experimental measurements in order to verif…
3D finite element analysis of tool wear in machining
Abstract The paper is focused on the 3D numerical prediction of tool wear in metal cutting operations. In particular, an analytical model, able to take into account the diffusive wear mechanism, was implemented through a specific subroutine. Furthermore, an advanced approach to model heat transfer phenomena at the tool–chip interface was included in the numerical simulation. The adopted simulation strategy gave the possibility to properly evaluate the tool wear. The 3D FEM results were compared with some experimental data obtained turning AISI 1045 steel using uncoated WC tool; a good agreement was found out.
ALE Simulation of Orthogonal Cutting: a New Approach to Model Heat Transfer Phenomena at the Tool-Chip Interface
This paper presents a new procedure to evaluate the global heat transfer coefficient in orthogonal cutting. The knowledge of the actual heat transfer conditions is a fundamental issue as far as the life, tool wear and tool substitution interval are regarded. More in detail, an Arbitrary Lagrangian-Eulerian approach was utilised to model orthogonal cutting process and the numerical simulations were validated by making experimental tests for identifying cutting forces and internal tool temperatures. A mild steel was cut utilising both an uncoated (WC) and a coated (TiN) tool. On the basis of both experimental and simulative data, a consistent model of the global heat transfer coefficient as f…
Optimal design of tube hydroforming processes: A fuzzy-logic-based approach
In recent years, tube hydroforming has become an economic and industrially suitable alternative to various traditional stamping processes, in particular for small batch production. In the present paper, an artificial intelligence system based on fuzzy logic was implemented for tube hydroforming process design. The aim was to achieve a process design procedure able to prevent forming defects and guarantee the achievement of the desired final shape of the component. In particular, the process design concerns the internal pressure history and the axial feeding. The fuzzy system is able to provide optimal trajectories for both the controlled parameters, producing a defect-free final part.
An Experimental Investigation of Residual Stresses in Hard Machining of AISI 52100 Steel
In this paper an experimental investigation was conducted to determine the effects of the tool cutting-edge geometry, workpiece hardness, cutting speed, and microstructural changes (white and dark layers) on the residual stresses in dry orthogonal hard machining of AISI 52100 steel. X-ray diffraction technique was used to obtain in-depth residual stresses profiles in both axial and circumferential directions. The results show that tool geometry, workpiece hardness and cutting parameters significantly affect the surface residual stress, maximum compressive residual stress below the machined surface and its location. Moreover, microstructural analysis shows that thermally-induced phase transf…
Prediction of Tool Wear Progress in Machining of Carbon Steel using different Tool Wear Mechanismsl
In this paper the prediction of tool wear on carbide uncoated tools was taken into account. In particular, two different tool wear models based on the diffusion mechanism and on the abrasion mechanism were considered. The calibration of the utilized models was done using the results obtained by experimental analysis performed on an orthogonally machined AISI 1020 tube. Once the calibration was executed, numerical simulations, for both the utilized tool wear models, were simultaneously performed with the aim to test the capability of the proposed numerical procedure. The comparison between the two tool wear mechanisms for predicting the flank tool wear is discussed in the paper.
On the effectiveness of Finite Element simulation of orthogonal cutting with particular reference to temperature prediction
Abstract Finite Element simulation of orthogonal cutting is nowadays assuming a large relevance; in fact a very large number of papers may be found out in technical literature on this topic. In recent years, numerical simulation was performed to investigate various phenomena such as chip segmentation, force prediction and tool wear. On the other hand, some drawbacks have to be highlighted; due to the geometrical and computational complexity of the updated-Lagrangian formulation mostly used in FE codes, a cutting time of only a few milliseconds can be effectively simulated. Therefore, steady-state thermal conditions are not reached and the simulation of the thermal phenomenon may be ineffect…
DEPENDENCE OF MACHINING SIMULATION EFFECTIVENESS ON MATERIAL AND FRICTION MODELLING
Numerical simulation of cutting processes is still a very difficult matter, although some relevant geometrical simplifications and high-performance codes are used. A large number of technical papers have been focused on the predictive capability of the codes: nevertheless the prediction quality is not very satisfactory if the problem is analyzed in a wide sense. In this paper the simple orthogonal cutting process of a plain-carbon steel is investigated taking into account different process conditions (cutting speed and feed rate). Furthermore, four material constitutive equations and three friction models were implemented and a sensitivity analysis was carried out comparing the numerical pr…