0000000000073007
AUTHOR
G. Camps
Neural Networks Ensemble for Cyclosporine Concentration Monitoring
This paper proposes the use of neural networks ensemble for predicting the cyclosporine A (CyA)concen tration in kidney transplant patients. In order to optimize clinical outcomes and to reduce the cost associated with patient care, accurate prediction of CyA concentrations is the main objective of therapeutic drug monitoring. Thirty-two renal allograft patients and different factors (age, weight, gender, creatinine and post-transplantation days, together with past dosages and concentrations)w ere studied to obtain the best models. Three kinds of networks (multilayer perceptron, FIR network, Elman recurrent network) and the formation of neural-network ensembles were used. The FIR network, y…
A Novel Approach to Introducing Adaptive Filters Based on the LMS Algorithm and Its Variants
This paper presents a new approach to introducing adaptive filters based on the least-mean-square (LMS) algorithm and its variants in an undergraduate course on digital signal processing. Unlike other filters currently taught to undergraduate students, these filters are nonlinear and time variant. This proposal introduces adaptive filtering in the context of a linear time-invariant system using a real problem. In this way, introducing adaptive filters using concepts already familiar to the students motivates their interest through practical application. The key point for this simplification is that the input to the filter is constant so that the adaptive filter becomes linear. Therefore, a …
Neural networks as effective techniques in clinical management of patients: some case studies
In this paper, we present four examples of effective implementation of neural systems in the daily clinical practice. There are two main goals in this work; the first one is to show that neural networks are especially well-suited tools for solving different kind of medical/pharmaceutical problems, given the complex input output relationships and the few a priori knowledge about data distribution and variable relations. The second goal is to develop specific software applications, which enclose complex mathematical models, to clinicians; thus, the use of such models as decision support systems is facilitated. Four important pharmaceutical problems are considered in this study: identificatio…
Some Examples for Solving Clinical Problems Using Neural Networks
In this paper neural networks are presented for solving some pharmaceutical problems. We have predicted and prevented patients with potential risk of post-Chemotherapy Emesis and potentially intoxicated patients treated with Digoxin. Neural networks have been also used for predicting Cyclosporine A concentration and Erythropoietin concentrations. Several neural networks (multilayer perceptron for classification tasks and Elman and FIR networks for prediction) and classical methods have been used. Results show how neural networks are very suitable tools for classification and prediction tasks, outperforming the classical methods. In a neural approach it is not strictly necessary to assume a …