0000000000073060

AUTHOR

Kaspars Blushs

<title>Level-crossing spectroscopy of the 7, 9, and 10D states of Cs in an external electric field</title>

We discuss experimental and theoretical studies of coherent excitation of magnetic sublevels in n D states of cesium that cross in an external electric field. Crossings of mF magnetic sublevels of hyperfine F levels with ΔmF = ±2 lead to resonances in the linearly polarized laser induced fluorescence, while crossings with ΔmF = ±1 lead to resonances in the circularly polarized laser induced fluorescence. These resonances can be exploited to observe alignment to orientation conversion. From the level crossing signals it is possible to measure atomic properties, such as the tensor polarizability α2 and the hyperfine constant A . Alignment to orientation conversion involves the deformation of …

research product

Validity of rate equations for Zeeman coherences for analysis of nonlinear interaction of atoms with broadband laser radiation

In this paper we, to our knowledge, for the first time obtain the rate equations for Zeeman coherences in the broad line approximation and steady-state balance equations directly from optical Bloch equations without the use of the perturbation theory. The broad line approximation allows us to use the adiabatic elimination procedure in order to eliminate the optical coherences from the optical Bloch equations, but the steady-state condition allows us to derive the balance equations straightforward. We compare our approach with the perturbation theory approach as given previously and show that our approach is more flexible in analyzing various experiments. Meanwhile we also show the validity …

research product

Electric-Field-Induced Symmetry Breaking of Angular Momentum Distribution in Atoms

We report the experimental observation of alignment to orientation conversion in the 7D_3/2 and 9D_3/2 states of Cs in the presence of an external dc electric field, and without the influence of magnetic fields or atomic collisions. Initial alignment of angular momentum states was created by two-step excitation with linearly polarized laser radiation. The appearance of transverse orientation of angular momentum was confirmed by the observation of circularly polarized light. We present experimentally measured signals and compare them with the results of a detailed theoretical model based on the optical Bloch equations.

research product

Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field

It is experimentally demonstrated that use of an extremely thin cell (ETC) with the thickness of a Rb atomic vapor column of ∼400 nm allows one to resolve a large number of individual transitions between Zeeman sublevels of the D1 line of 87Rb and 85Rb in the sub-Doppler fluorescence excitation spectra in an external magnetic field of ∼200 G. It is revealed that due to the peculiarities of the Zeeman effect for different hyperfine levels of Rb, all allowed transitions between magnetic sublevels can be clearly resolved for 87RbF_g = 1 --> F_e = 1, 2 and F_g = 2 --> F_e = 1, 2 fluorescence excitation. Also, relatively good spectral resolution can be achieved for 85RbF_g = 2 --> F_e = 2, 3 flu…

research product

Electric field induced hyperfine level-crossings in (nD)Cs at two-step laser excitation: experiment and theory

The pure electric field level-crossing of m_F Zeeman sublevels of hyperfine F levels at two-step laser excitation was described theoretically and studied experimentally for the nD_3/2 states in Cs with n = 7,9, and 10, by applying a diode laser in the first 6S_1/2 to 6P_3/2 step and a diode or dye laser for the second 6P_3/2 to nD_3/2 step. Level-crossing resonance signals were observed in the nD_3/2 to 6P_1/2 fluorescence. A theoretical model was developed to describe quantitatively the resonance signals by correlation analysis of the optical Bloch equations in the case when an atom simultaneously interacts with two laser fields in the presence of an external dc electric field. The simulat…

research product

The Hanle effect and level crossing spectroscopy in Rb vapour under strong laser excitation

We measure and simulate numerically the Hanle effect and non-zero field level crossing signals in 85 Rb and 87 Rb atoms in a magnetic field at room temperature. Diode laser radiation from 4 mW cm −2 to 3. 3W cm −2 tuned to the D2 absorption line of each isotope excites atoms into all the excited-state hyperfine levels simultaneously inside the unresolved Doppler profile. Polarization fluorescence detection is used to observe dark and bright resonances, as well as non-zero field level crossing resonances, for several excitation lines. A broad spectral line excitation model is applied to analyse the measured signals. The non-linear Zeeman effect is included in the model for both ground and ex…

research product