0000000000073078

AUTHOR

Rémi Khatib

showing 6 related works from this author

The Fluorite/Water Interfaces: Structure and Spectroscopy from First Principles Simulations

2014

Despite its relevance to industrial, environmental and medical application, the fluorite/water interface still lacks a microscopic/atomistic characterization. In this contribution we provide the first atomistic description of such interface using first principles molecular dynamics simulations. Our models, which explore a wide range of pH, are able to provide a rational of the recent vibrational spectroscopy experiments. In particular we find that at neutral pH the water at the interface is disordered, in agreement with the experimental data, and explaining why no Vibrational Sum Frequency Generation (VSFG) signal is recorded. At high pH, OH groups which localize at the interface are respon…

Molecular dynamicsRange (particle radiation)Sum-frequency generationComputer scienceChemical physicsInfrared spectroscopySpectroscopyFluoriteSignalCharacterization (materials science)
researchProduct

The nanoscale structure of the Pt-water double layer under bias revealed

2019

The nanoscopic mass and charge distribution within the double layer at electrified interfaces plays a key role in electrochemical phenomena of huge technological relevance for energy production and conversion. However, in spite of its importance, the nanoscopic structure of the double layer and its response to an applied potential is still almost entirely unknown, even for Pt-water, the most fundamental electrochemical interface. Using a general ab initio methodology which advances previous models towards a dynamic and more realistic description of an electrode/electrolyte interface, we simulate for the first time the nanoscopic structure of the Pt-water double layer and its response to an …

Double layer (biology)Chemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials scienceGeneral Chemical EngineeringAbsolute electrode potentialCharge densityMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyElementary charge01 natural sciencesCapacitance0104 chemical sciencesDipoleChemical physicsPhysics - Chemical PhysicsElectrodeElectrochemistry0210 nano-technologyLayer (electronics)
researchProduct

Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface

2016

At the water–air interface, the hydrogen-bond network of water molecules is interrupted, and accordingly, the structure and dynamics of the interfacial water molecules are altered considerably compared with the bulk. Such interfacial water molecules have been studied by surface-specific vibrational sum-frequency generation (SFG) spectroscopy probing high-frequency O–H stretch and H–O–H bending modes. In contrast, the low-frequency librational mode has been much less studied with SFG. Because this mode is sensitive to the hydrogen-bond connectivity, understanding the librational mode of the interfacial water is crucial for unveiling a microscopic view of the interfacial water. Here, we compu…

ChemistryAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral lineForce field (chemistry)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular dynamicsDipoleGeneral EnergyPolarizabilityChemical physicsMoleculePhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologySpectroscopyPhysics::Atmospheric and Oceanic PhysicsThe Journal of Physical Chemistry C
researchProduct

Water orientation and hydrogen-bond structure at the fluorite/water interface

2016

AbstractWater in contact with mineral interfaces is important for a variety of different processes. Here, we present a combined theoretical/experimental study which provides a quantitative, molecular-level understanding of the ubiquitous and important CaF2/water interface. Our results show that, at low pH, the surface is positively charged, causing a substantial degree of water ordering. The surface charge originates primarily from the dissolution of fluoride ions, rather than from adsorption of protons to the surface. At high pH we observe the presence of Ca-OH species pointing into the water. These OH groups interact remarkably weakly with the surrounding water and are responsible for the…

Materials scienceChemical physics[SDV]Life Sciences [q-bio]FOS: Physical sciences02 engineering and technologyElectronic structureMolecular dynamics010402 general chemistry01 natural sciencesArticleSpectral lineIonchemistry.chemical_compoundAdsorptionPhysics - Chemical PhysicsSurface chargeDissolutionChemical Physics (physics.chem-ph)MultidisciplinaryHydrogen bond021001 nanoscience & nanotechnologySurface spectroscopy0104 chemical sciencesGeochemistrychemistryChemical physics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyFluorideScientific Reports
researchProduct

Microscopic Insights into the Fluorite/Water Interfaces from Vibrational Sum Frequency Generation Spectroscopy

2016

Water/mineral interfaces are central to a wide range of environmental and technological processes. In this report we provide a quantitative, molecular-level understanding of the CaF2/water interface using Density Functional Theory-based molecular dynamics simulations. In particular through the comparison of calculated Vibrational Sum Frequency Generation spectra to the experimental ones, we give a structural characterisation of the interface at different pH. At low pH, the surface is positively charged, causing a substantial degree of water ordering. Our results suggest that the surface charge originates from the dissolution of fluoride ions of the topmost layer, rather than from proton ads…

AdsorptionProtonChemistryHydrogen bondChemical physicsAnalytical chemistryDensity functional theorySurface chargeDissolutionIonSum frequency generation spectroscopy
researchProduct

Sum Frequency Generation Spectra from Velocity–Velocity Correlation Functions

2017

We developed an expression for the calculation of the sum frequency generation spectra (SFG) of water interfaces that is based on the projection of the atomic velocities on the local normal modes. Our approach permits one to obtain the SFG signal from suitable velocity-velocity correlation functions, reducing the computational cost to that of the accumulation of a molecular dynamics trajectory, and therefore cutting the overhead costs associated with the explicit calculation of the dipole moment and polarizability tensor. Our method permits to interpret the peaks in the spectrum in terms of local modes, also including the bending region. The results for the water-air interface, obtained usi…

PhysicsSum-frequency generation010304 chemical physicsAnalytical chemistryPhase (waves)010402 general chemistry01 natural sciencesProjection (linear algebra)Spectral line0104 chemical sciencesComputational physicsMoment (mathematics)Molecular dynamicsDipoleNormal mode0103 physical sciencesGeneral Materials SciencePhysical and Theoretical ChemistryThe Journal of Physical Chemistry Letters
researchProduct