0000000000073191

AUTHOR

Stefano Cannata

Predicting LVOT Obstruction in Transcatheter Mitral Valve Replacement for Failed Surgical Annuloplasty

research product

Simulation of left ventricular outflow tract (LVOT) obstruction in transcatheter mitral valve-in-ring replacement.

Left ventricular outflow tract (LVOT) obstruction is a feared complication of transcatheter mitral valve replacement (TMVR). This procedure leads to an elongation of LVOT in the left ventricle (namely, the neoLVOT), ultimately portending hemodynamic impairment and death. This study sought to understand the biomechanical implications of LVOT obstruction in two patients who underwent TMVR as an "off-label" application of the Edwards SAPIEN 3 (S3) Ultra transcatheter heart valve (THV). A computational framework of TMVR was developed to assess the neoLVOT area and quantify the sub-aortic flow structure. We observed that the annuloplasty ring serves as the key anchor zone of S3 Ultra THV. A good…

research product

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo

AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …

research product

Numerical simulation of transcatheter mitral valve replacement: The dynamic implication of LVOT obstruction in the valve-in-ring case.

Transcatheter mitral valve replacement (TMVR) has been used for “off-label” treatment when annuloplasty band ring for mitral repair fails. However, the complex anatomy and function of the mitral valve may lead to fatal complications as a result of the left ventricular outflow tract (LVOT) obstruction in TMVR. We report the structural and hemodynamic response of LVOT obstruction resulting from TMVR with the Edwards SAPIEN 3 Ultra (S3) device. We modified the original Living Heart Human Model (LHHM) to account for a failed mitral valve with an annuloplasty band ring and simulated the cardiac beating condition in the setting of S3 device implantation. Findings demonstrated a high dynamic behav…

research product

Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve

Bicuspid aortic valve (BAV) anatomy has routinely been considered an exclusion in the setting of transcatheter aortic valve implantation (TAVI) because of the large dimension of the aortic annulus having a more calcified, bulky, and irregular shape. The study aims to develop a patient-specific computational framework to virtually simulate TAVI in stenotic BAV patients using the Edwards SAPIEN 3 valve (S3) and its improved version SAPIEN 3 Ultra and quantify stent frame deformity as well as the severity of paravalvular leakage (PVL). Specifically, the aortic root anatomy of n.9 BAV patients who underwent TAVI was reconstructed from pre-operative CT imaging. Crimping and deployment of S3 fram…

research product

Transcatheter Heart Valve Implantation in Bicuspid Patients with Self-Expanding Device

Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the conformability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specifically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in …

research product

CAD Modeling for Evaluating LVOT Obstruction in Transcatheter Mitral Valve Replacement

The current generation of transcatheter heart valves (THV), as the Edwards SAPIEN 3 Ultra (S3), is not specifically designed for mitral position implantation and has intrinsic design geometry that may make mitral implantation suboptimal. This study aimed to develop a computed-tomography (CT) based CAD workflow for the preoperative planning of transcatheter mitral valve replacement (TMVR) by evaluating the resulting obstruction in the left ventricular outflow tract (LVOT). Specifically, the computational framework to reconstruct heart anatomy and virtually deploy the THV into mitral valve annulus was developed and successively applied to the cases of two patients who experienced annuloplasty…

research product

High-density ZnO Nanowires as a Reversible Myogenic-Differentiation-Switch

Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically express…

research product