0000000000073199
AUTHOR
Th. Kühl
Laser spectroscopy at the experimental storage ring - an overview
We present an overview of laser spectroscopy experiments at the experimental storage ring of GSI in Darmstadt, which have been and will be performed in the near future.
Laser spectroscopy of the (1s(2)2s2p) P-3(0)-P-3(1) level splitting in Be-like krypton
15th International Conference on the Physics of Highly Charged Ions, HCI2010, Fudan Univ, Shanghai, PEOPLES R CHINA, AUG 29-SEP 03, 2010; International audience; Heavy few-electron ions, such as He-, Li- and Be-like ions, are ideal atomic systems to study the effects of correlation, relativity and quantum electrodynamics. Very recently, theoretical and experimental studies of these species achieved a considerable improvement in accuracy. Be-like ions are interesting because their first excited state, i.e. (1s(2)2s2p) P-3(0), has an almost infinite lifetime (tau(0)) in the absence of nuclear spin (I), as it can only decay by a two-photon E1M1 transition to the (1s(2)2s(2)) S-1(0) ground stat…
Status and perspectives of atomic physics research at GSI
A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei - up to a Lorentz factor of 24. At those relativistic velocities, the energies of optical transitions, such as for lasers.. are boosted into the X-ray region and the high-charge state ions generate electric and magnetic fields of exceptional strength. Together with high beam intensities a range of important experiments can be anticipated, for example electronic transitions in r…
Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR
Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…
Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination
Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound iso…
Laser cooling of relativistic heavy-ion beams for FAIR
Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.
<title>New PW stretcher-compressor design for PHELIX laser</title>
With PHELIX (Petawatt High Energy Laser for heavy Ion EXperiments) a high energy/ultra-high intensity laser system is currently under construction at the GSI (Gesellschaft fur SchwerIonenforschung, Germany). In combination with the high current high energy ion accelerator facility this will provide worldwide unique experimental opportunities in the field of dense plasma physics and inertial fusion research. In the long pulse mode the laser system will provide laser pulses of up to 5 kJ in 1-10 ns pulses. In the high intensity mode pulse powers in excess of 1 PW will be achieved. For this the well known technique of chirped pulse amplification (CPA) will be implemented. A new CPA stretcher-c…