0000000000073291

AUTHOR

Alexander Winkler

Spinodal Decomposition Kinetics of Colloid-Polymer Mixtures Including Hydrodynamic Interactions

The phase separation dynamics of a model colloid-polymer mixture is studied by taking explicitly the hydrodynamic interactions caused by the solvent into account. Based on the studies on equilibrium phase behavior we perform a volume quench from the homogeneous region of the phase diagram deep into the region where colloid-rich and polymer-rich phases coexist. We demonstrate that the Multiparticle Collision Dynamics (MPCD) algorithm is well suited to study spinodal decomposition and present first results on the domain growth behavior of colloid-polymer mixtures in quasi two-dimensional confinement. On the one hand side we find that the boundary condition of the solvent with respect to the r…

research product

Polymer-induced phase separation in suspensions of bacteria

We study phase separation in suspensions of two unrelated species of rod-like bacteria, Escherichia coli and Sinorhizobium meliloti, induced by the addition of two different anionic polyelectrolytes, sodium polystyrene sulfonate or succinoglycan, the former being synthetic and the latter of natural origin. Comparison with the known behaviour of synthetic colloid-polymer mixtures and with simulations show that "depletion" (or, equivalently, "macromolecular crowding") is the dominant mechanism: exclusion of the non-adsorbing polymer from the region between two neighbouring bacteria creates an unbalanced osmotic force pushing them together. The implications of our results for understanding phe…

research product

Phase Separation of Colloid Polymer Mixtures Under Confinement

Colloid polymer mixtures exhibit vapor-liquid like and liquid-solid like phase transitions in bulk suspensions, and are well-suited model systems to explore confinement effects on these phase transitions. Static aspects of these phenomena are studied by large-scale Monte Carlo simulations, including novel “ensemble switch” methods to estimate excess free energies due to confining walls. The kinetics of phase separation is investigated by a Molecular Dynamics method, where hydrodynamic effects due to the solvent are included via the multiparticle collision dynamics method.

research product

Polymer-induced phase separation in Escherichia coli suspensions

We studied aggregation and phase separation in suspensions of de-flagellated Escherichia coli (AB1157) in phosphate buffer induced by the anionic polyelectrolyte sodium polystyrene sulfonate. We also performed Monte Carlo simulations of this system based on the Asakura–Oosawa model of colloid–polymer mixtures. The results of these simulations, as well as comparison with previous work on synthetic colloid–polymer mixtures, demonstrate that the role of the polymer is to cause a depletion attraction between the E. coli cells. The implication of these results for understanding the role of (predominantly anionic) extracellular polymeric substances (EPS) secreted by bacteria in various natural ph…

research product

Molecular mode-coupling theory applied to a liquid of diatomic molecules

We study the molecular mode coupling theory for a liquid of diatomic molecules. The equations for the critical tensorial nonergodicity parameters ${\bf F}_{ll'}^m(q)$ and the critical amplitudes of the $\beta$ - relaxation ${\bf H}_{ll'}^m(q)$ are solved up to a cut off $l_{co}$ = 2 without any further approximations. Here $l,m$ are indices of spherical harmonics. Contrary to previous studies, where additional approximations were applied, we find in agreement with simulations, that all molecular degrees of freedom vitrify at a single temperature $T_c$. The theoretical results for the non ergodicity parameters and the critical amplitudes are compared with those from simulations. The qualitat…

research product

Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface and finite size effects.

When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: For very long pores the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place fluctuations occur between vapor-like and liquid-like states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality) the system at phase coexistence is in an axially inhomogeneous multi-domain …

research product

Hard sphere fluids at a soft repulsive wall: A comparative study using Monte Carlo and density functional methods

Hard-sphere fluids confined between parallel plates at a distance D apart are studied for a wide range of packing fractions including also the onset of crystallization, applying Monte Carlo simulation techniques and density functional theory. The walls repel the hard spheres (of diameter σ) with a Weeks-Chandler-Andersen (WCA) potential V(WCA)(z) = 4ε[(σ(w)/z)(12) - (σ(w)/z)(6) + 1/4], with range σ(w) = σ/2. We vary the strength ε over a wide range and the case of simple hard walls is also treated for comparison. By the variation of ε one can change both the surface excess packing fraction and the wall-fluid (γ(wf)) and wall-crystal (γ(wc)) surface free energies. Several different methods t…

research product

Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: A multiparticle collision dynamics study

A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point particles interacting with each other and with the polymers with strongly repulsive potentials, while polymers interact with each other with a softer potential. The fluid in the suspension is taken into account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where the suspension is confined between parallel repulsive walls, different possibilities for the hydrodynamic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments are considered, where the system volume is suddenly reduced (keeping the density of the solvent flui…

research product

Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equil…

research product

Rounding of Phase Transitions in Cylindrical Pores

Phase transitions of systems confined in long cylindrical pores (capillary condensation, wetting, crystallization, etc.) are intrinsically not sharply defined but rounded. The finite size of the cross section causes destruction of long range order along the pore axis by spontaneous nucleation of domain walls. This rounding is analyzed for two models (Ising/lattice gas and Asakura-Oosawa model for colloid-polymer mixtures) by Monte Carlo simulations and interpreted by a phenomenological theory. We show that characteristic differences between the behavior of pores of finite length and infinitely long pores occur. In pores of finite length a rounded transition occurs first, from phase coexiste…

research product

Phase transitions and phase equilibria in spherical confinement

Phase transitions in finite systems are rounded and shifted and affected by boundary effects due to the surface of the system. This interplay of finite size and surface effects for fluids confined inside of a sphere of radius $R$ is studied by a phenomenological theory and Monte Carlo simulations of a model for colloid-polymer mixtures. For this system the phase separation in a colloid-rich phase and a polymer-rich phase has been previously studied extensively in the bulk. It is shown that spherical confinement can strongly enhance the miscibility of the mixture. Depending on the wall potentials at the confining surface, the wetting properties of the wall can be controlled, and this interpl…

research product

Methods to Compute Pressure and Wall Tension in Fluids containing Hard Particles

Colloidal systems are often modelled as fluids of hard particles (possibly with an additional soft attraction, e.g. caused by polymers also contained in the suspension). in simulations of such systems, the virial theorem cannot be straightforwardly applied to obtain the components of the pressure tensor. In systems confined by walls, it is hence also not straightforward to extract the excess energy due to the wall (the "wall tension") from the pressure tensor anisotropy. A comparative evaluation of several methods to circumvent this problem is presented, using as examples fluids of hard spheres and the Asakura-Oosawa model of colloid-polymer mixtures with a size ratio $q=0.15$ (for which th…

research product