0000000000073397

AUTHOR

Greta Inkrataite

0000-0001-7173-7454

Influence of boron on the essential properties for new generation scintillators

Abstract Cerium doped yttrium aluminum (YAG:Ce) and lutetium aluminum garnets (LuAG:Ce) are some of the most popular materials used as scintillators. While the scintillators themselves are materials that absorb and convert high-energy radiation into light. The decay time in YAG:Ce and LuAG:Ce is about 60 ns, therefore the essential task for their improvement would be to shorten it as much as possible. For this reason, in this work, the aforementioned garnets were doped with different amounts of boron. B3+ ion has a suitable neutron capture cross section and can therefore absorb gamma radiation. Because of the extremely strong absorption of thermal neutrons and the weak interaction with MeV …

research product

Sol-gel assisted molten-salt synthesis of novel single phase Y3–2xCa2xTaxAl5−xO12:1%Eu garnet structure phosphors

Strong absorption and emission are the key the features of any phosphor. The results obtained during this study demonstrate the difficulty of the incorporation of tantalum ions into the garnet structure and reveal that only the combination of Sol-Gel synthesis method together with Molten-Salt technique enable to obtain a single-phase cubic garnet structure. Note that, the Sol-Gel synthesis assisted by further processing by Molten-Salt technique can be a potentially new way of material preparation reported in literature. This work also proves that this combination of synthesis methods is much more capable of incorporating ions with large ionic radii into the garnet structure as compared to t…

research product