Entropy and Renormalization in Chaotic Visibility Graphs
On the thermodynamic origin of metabolic scaling
The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…
Feigenbaum graphs: a complex network perspective of chaos
The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map…
Author Correction: On the thermodynamic origin of metabolic scaling
The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…
From time series to complex networks: the visibility graph
In this work we present a simple and fast computational method, the visibility algorithm , that converts a time series into a graph. The constructed graph inherits several properties of the series in its structure. Thereby, periodic series convert into regular graphs, and random series do so into random graphs. Moreover, fractal series convert into scale-free networks, enhancing the fact that power law degree distributions are related to fractality, something highly discussed recently. Some remarkable examples and analytical tools are outlined to test the method's reliability. Many different measures, recently developed in the complex network theory, could by means of this new approach cha…
Horizontal visibility graphs: exact results for random time series
The visibility algorithm has been recently introduced as a mapping between time series and complex networks. This procedure allows us to apply methods of complex network theory for characterizing time series. In this work we present the horizontal visibility algorithm, a geometrically simpler and analytically solvable version of our former algorithm, focusing on the mapping of random series (series of independent identically distributed random variables). After presenting some properties of the algorithm, we present exact results on the topological properties of graphs associated with random series, namely, the degree distribution, the clustering coefficient, and the mean path length. We sh…
Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [1] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree di…