0000000000073614
AUTHOR
D. Van Straten
showing 2 related works from this author
Projective resolutions associated to projections
2000
In this paper we will describe projective resolutions of d dimensional Cohen–Macaulay spaces X by means of a projection of X to a hypersurface in d+1-dimensional space. We will show that for a certain class of projections, the resulting resolution is minimal.
Dimensional interpolation and the Selberg integral
2019
Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.