0000000000073614

AUTHOR

D. Van Straten

showing 2 related works from this author

Projective resolutions associated to projections

2000

In this paper we will describe projective resolutions of d dimensional Cohen–Macaulay spaces X by means of a projection of X to a hypersurface in d+1-dimensional space. We will show that for a certain class of projections, the resulting resolution is minimal.

Pure mathematicsHypersurfaceNumber theoryMathematics::Commutative AlgebraProjection (mathematics)General MathematicsProjective spaceAlgebraic geometryProjective testSpace (mathematics)MathematicsResolution (algebra)manuscripta mathematica
researchProduct

Dimensional interpolation and the Selberg integral

2019

Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyFOS: Physical sciencesAlgebraic geometry01 natural sciencesWedge (geometry)Dimensional regularizationsymbols.namesakeMathematics - Algebraic GeometryMathematics::Algebraic GeometryGrassmannianEuler characteristic0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematics010102 general mathematicsHigh Energy Physics - Theory (hep-th)symbols010307 mathematical physicsGeometry and TopologyMirror symmetryBessel functionInterpolation
researchProduct