6533b828fe1ef96bd1287944

RESEARCH PRODUCT

Dimensional interpolation and the Selberg integral

V. GolyshevDon ZagierDon ZagierD. Van Straten

subject

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyFOS: Physical sciencesAlgebraic geometry01 natural sciencesWedge (geometry)Dimensional regularizationsymbols.namesakeMathematics - Algebraic GeometryMathematics::Algebraic GeometryGrassmannianEuler characteristic0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematics010102 general mathematicsHigh Energy Physics - Theory (hep-th)symbols010307 mathematical physicsGeometry and TopologyMirror symmetryBessel functionInterpolation

description

Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.

https://dx.doi.org/10.48550/arxiv.1906.00071