Search results for "Grassmannian"
showing 10 items of 12 documents
A note on the unirationality of a moduli space of double covers
2010
In this note we look at the moduli space $\cR_{3,2}$ of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra. It admits a dominating morphism $\cR_{3,2} \to {\mathcal A}_4$ to Siegel space. We show that there is a birational model of $\cR_{3,2}$ as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of $\cR_{3,2}$ and hence a new proof for the unirationality of ${\mathcal A}_4$.
Subvarieties of the Grassmannian $G(1,N)$ with small secant variety
2002
Classification of n-dimensional subvarieties of G(1, 2n) that can be projected to G(1, n + 1)
2005
A structure theorem is given for n-dimensional smooth subvarieties of the Grassmannian G(1, N); with N >= n + 3, that can be isomorphically projected to G(1, n + 1). A complete classification in the cases N = 2n + 1 and N = 2n follows, as a corollary.
Projecting 4-folds from G(1, 5) to G(1, 4)
2002
We study 4-dimensional subvarieties of the Grassmannian G(1,5) with singular locus of dimension at most 1 that can be isomorphically projected to G(1,4).
On globally generated vector bundles on projective spaces
2009
AbstractA classification is given for globally generated vector bundles E of rank k on Pn having first Chern class c1(E)=2. In particular, we get that they split if k<n unless E is a twisted null-correlation bundle on P3. In view of the well-known correspondence between globally generated vector bundles and maps to Grassmannians, we obtain, as a corollary, a classification of double Veronese embeddings of Pn into a Grassmannian G(k−1,N) of (k−1)-planes in PN.
The quantum chiral Minkowski and conformal superspaces
2010
We give a quantum deformation of the chiral super Minkowski space in four dimensions as the big cell inside a quantum super Grassmannian. The quantization is performed in such way that the actions of the Poincar\'e and conformal quantum supergroups on the quantum Minkowski and quantum conformal superspaces are presented.
Dimensional interpolation and the Selberg integral
2019
Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.
On double Veronese embeddings in the Grassmannian G(1,N)
2004
We classify all the embeddings of P^n in a Grassmannian of lines G(1,N) such that the composition with Pl\"ucker is given by a linear system of quadrics of P^n.
Sato's universal Grassmannian and group extensions
1991
An extension \(\widehat{GL}\) of the symmetry group GL of Sato's universal Grassmannian GM is constructed. The extension plays a similar role to that of the central extension \(\widehat{GL}_{{\text{res}}}\) in the approach of Segal and Wilson to τ functions and KP hierarchy. Our group G contains GLres as a subgroup and the associated τ function is a deformation of the usual τ function, leading to a deformed KP hierarchy. A relation to current algebra of Yang-Mills theory in 3+1 dimension is discussed.
The Kp Hierarchy
1989
As an application of the theory of infinite-dimensional Grassmannians and the representation theory of gl1 we shall study in this chapter certain nonlinear “exactly solvable” systems of differential equations. Exactly solvable means here that the nonlinear system can be transformed to an (infinite-dimensional) linear problem. A prototype of the equations is the Korteweg-de Vries equation $$\frac{{\partial u}}{{\partial t}} = \frac{3}{3}u\frac{{\partial u}}{{\partial x}} + \frac{1}{4}\frac{{{\partial ^3}u}}{{\partial {x^3}}}$$ . It turns out that it is more natural to consider an infinite system of equations like that above, for obtaining explicit solutions. The set of equations is called th…